N.V. Zhuleva – Post-graduate Student,
Department of Philosophy and Methodology of Science, Faculty of Philosophy, Lomonosov Moscow State University; Senior Lecturer,
Center for Additional Education of Faculty of Philosophy, Lomonosov Moscow State University E-mail: nina_rossia_mir@list.ru
The problems of methodological means of analysis of the conceptual basis of non-classical scientific disciplines in the case of formation of interdisciplinary research areas in the presence of disciplinary developed related fundamental sciences are not sufficiently developed.
Discovery own conceptual bases of the Biophysics as a branch of science, as well as clarification the methodological means of analysis of the conceptual basis on the base of the analysis of the history of Biophysics from biomechanics to electromagnetic levels of organization of biophysical systems.
For the analysis of the formation of the branch of science in the methodological basis of the analysis of theoretical practices introduced distinctions: the basic and the model levels of functioning of the theoretical objects (concepts), as well as philosophical, mathematical and substantive levels of interpretation of the relevant concepts. The specificity of the conceptual basis of Biophysics is formed by the functioning of the concepts «entropy» and «self-organization» as basic idealized objects. Their relationship with wave electromagnetic interactions is analyzed. Biophysics as a branch of science is formed during the formation of biophysical concepts with their own subject biophysical meaning.
The proposed methodological scheme allows a more detailed study of the theorization of emerging areas of research and can be used to analyze other emerging and/or interdisciplinary areas.
- Anishchenko L.N., Vasil’ev I.A.,. Chizh M.A. Radiolokator blizhnego deystviya s nepreryvnym izlucheniem dlya issledovaniya biologicheskikh ob’‘ektov. Elektromagnitnye volny i elektronnye sistemy. 2018. № 6. S. 20−24. (In Russian).
- Latur B. Dayte mne laboratoriyu, i ya perevernu mir. Per. s angl. P. Kusliy. Logos. 2002. № 5−6. S. 211−242. (In Russian).
- Vaynberg S. Mechty ob okonchatel’noy teorii. Fizika v poiskakh samykh fundamental’nykh zakonov prirody. Per. s angl. A.V. Berkova. M.: Editorial URSS. 2004. 256 s. (In Russian).
- Kitcher F. Matematicheskiy naturalizm. Per. s angl. V.Ya. Perminova. Metodologicheskiy analiz osnovaniy matematiki. M.: Nauka. 1988. 175 s. (In Russian).
- Berkinblit M.B., Glagoleva E.G. Elektrichestvo v zhivykh organizmakh. M.: Nauka. 1988. 288 s. (In Russian).
- Popova S.S. Biofizicheskiy eksperiment v epokhu Prosveshcheniya. Filosofiya nauki. 2011. № 1. S. 121−132. (In Russian).
- Zhul’eva N.V. O roli N.A. Umova v stanovlenii kontseptual’nogo bazisa biofiziki. Filosofiya nauki i tekhniki. 2018. T. 23. № 2. S. 36−48. (In Russian).
- Etkin V.A. Termodinamicheskiy vyvod uravneniy Maksvella. URL = http://www.sciteclibrary.ru/rus/catalog/pages/7628.html. In Russian).
- Lipkin A.I. Osnovaniya fiziki: vzglyad iz teoreticheskoy fiziki. M.: LENAND. 2014. 208 s. (In Russian).
- Chusov A.V. O nauke kak ob’‘ektivatsii sub’‘ektnykh, predmetnykh i kontseptual’nykh osnovaniy obosnovannogo poznaniya. Sotsial’nogumanitarnoe obozrenie. Mezhdunarodnyy zhurnal. 2018. № 4. S. 92−97. (In Russian).
- Zhul’eva N.V. Razvitie kontseptual’nogo bazisa biofiziki v Rossii vo vtoroy polovine XX veka. Filosofiya nauki. 2018. T. 78. № 3. S. 187−204. (In Russian).
- Stepin V.S. Teoreticheskoe znanie. M.: Progress-Traditsiya. 2003. 744 s. (In Russian).
- Zhul’eva N.V. Razvitie kontseptual’nogo bazisa biofiziki v Rossii vo vtoroy polovine XX veka. Filosofiya nauki. 2018. T. 78. № 3. S. 187−204. (In Russian).
- Zhul’eva N.V. Ponyatiya «samoorganizatsiya» i «entropiya» kak kontseptual’nye sredstva predstavleniya termodinamicheskoy problemy v biofizike. Vestnik Moskovskogo universiteta. Ser. 7. Filosofiya. 2017. № 5. S. 46−60. (In Russian).
- Umov N.A. Fiziko-khimicheskaya model’ zhivoy materii. Sobranie sochineniy. 1916. T. 3. S. 184−200. (In Russian).
- Shambadal’ P. Razvitie i prilozheniya ponyatiya entropii. Per. s fr. V.T. KHozyainova. M.: Nauka. 1967. 279 s. (In Russian).
- Shredinger E. Chto takoe zhizn’ s tochki zreniya fiziki?. Per. s angl. A.A. Malinovskogo. M.: RIMIS. 2009. 176 s. (In Russian).
- Vaganov M.A., Kulakov S.V., Moskalets O.D. Matematicheskaya model’ elektromagnitnogo izlucheniya plameni. Elektromagnitnye volny i elektronnye sistemy. 2018. № 6. S. 20−24. (In Russian).
- Zhul’eva N.V. O stanovlenii kontseptual’nogo bazisa mezhpredmetnoy oblasti nauchnykh issledovaniy na primere ponyatiya «entropii» v biofizike. Sotsial’no-gumanitarnoe obozrenie. Mezhdunarodnyy zhurnal. 2018. № 4. S. 41−46. (In Russian).
- Rubin A.B. Biofizika. M.: KDU. 1999. T. 1. 448 s. (In Russian).
- Savel’ev A.V. Ontologicheskoe rasshirenie teorii funktsional’nykh sistem. Zhurnal problem evolyutsii otkrytykh sistem. 2005. № 1(7). S. 86−94. (In Russian).
- Petrov N.V. Volnovaya entropiya: fizicheskiy smysl s pozitsii zakona sokhraneniya zhizni. URL = https://maxpark.com/community/88/content/5101725. (In Russian).
- Vol’kenshteyn M.V. Obshchaya biofizika. M.: Nauka. 1978. 592 s. (In Russian).
- Alemanov S.B. Volnovaya teoriya stroeniya elementarnykh chastits. M.: BINAR. 2005. 132 s. (In Russian).
- Savel’ev A.V. Otkrytie i mediko-biologicheskie primeneniya biogal’vanochastotnogo effekta. Biomeditsinskaya radioelektronika. 2016. № 1. S. 85−94. (In Russian).
- Savel’ev A.V. Vzaimodeystvie elektromagnitnogo polya spayka s oligodendrogliey. Pod red. E.V. Losevoy, A.V. Savel’eva. Biomeditsinskaya radioelektronika. 2016. № 5. S. 31−36. (In Russian).
- Kolushov V.V., Savel’ev A.V. Funktsional’naya geometriya dendritov i ee modelirovanie. Neyrokomp’yutery: razrabotka, primenenie. 2018. № 6. S. 47−50. (In Russian).