350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2019 г.
Article in number:
Information and mathematical provision of analysis of covering of regions on the underground surface orbital grouping of space Earth remote sensing
Type of article: scientific article
DOI: 10.18127/j15604128-201905-06
UDC: 519.6
Authors:

A.S. Shevlyakov – Ph.D.(Eng.), Leading Part-programming Engineer, 

JС STME «Integrated technology development» (Moscow)

E-mail: shevlyakovas@mail.ru

G.I. Andreev – Ph.D.(Eng.), Head of Department of Mathematic Modeling, 

JС STME «Integrated technology development» (Moscow)

E-mail: andreeffgena@rambler.ru

A.K. Vishnevsky – Ph.D.(Eng.), Senior Lecturer, 

Peter The Great Military Academy of Strategic Rocket Forces (Moscow)

E-mail: vishn.artem@yandex.ru

V.I. Gorbulin – Dr.Sc.(Eng.), Professor,  

Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: v_gorbulin@mail.ru

M.V. Shtelma – Head of Digital Equipment Modeling Group, 

JС STME «Integrated technology development» (Moscow) E-mail: m.schtelma@yandex.ru

Abstract:

Current trends in the development of the space industry of remote sensing of the Earth determine the high dynamics of the development of orbital constellations of spacecraft, in the direction of increasing both quantitative and qualitative potential. Qualitative characteristics are determined by various parameters of the target and onboard equipment of spacecraft. Under current conditions, modern and promising orbital constellations of Earth remote sensing spacecraft are multi-parameter super complex systems that operate in conditions of incomplete certainty of the external environment. An indicator of the effectiveness of the functioning of the orbital group is the shooting of the maximum number of observed objects that meet the criteria of the customer. The quality of the planning of the functioning of the orbital grouping directly depends on the accuracy of the forecast for the coverage of the Earth’s observed area by the radiation patterns of the onboard target equipment of spacecraft and the open set of parameters of limited onboard resources, which determines the high complexity of the calculation problem. Objective is to increase the efficiency of the analysis of the coverage of the regions of the space body by the orbital constellation of spacecraft for remote sensing of the Earth by presenting a cylindrical projection of the space body in the form of a raster model. Approach is parallel computing on a graphical special processor. Informational and mathematical support was developed for analyzing the coverage of regions on the underlying surface by the orbital constellation of Earth remote sensing spacecraft, which provides a high level of calculation efficiency. Evaluation of the accuracy of the calculations showed an error of not more than one square kilometer on the surface of the Earth. The calculation of the coverage of the observed underlying surface for the existing requirements for the planning interval and the composition of the orbital group is performed in the foreseeable time, comparable with real-time calculations.

Pages: 41-52
References
  1. Walker J.G. Circular Orbit Patterns Providing Continuous Whole Earth Coverage. Royal Aircraft Establishment. Technical Report 70211. 1970. November.
  2. Mozhaev G.V. Zadacha o nepreryvnom obzore Zemli i kinematicheski pravilnye sputnikovye sistemy. Kosmicheskie issledovaniya. 1972. T. 10. № 6. S. 833−840; 1973. T. 11. № 1. S. 59−69. (In Russian).
  3. Baghdadi N., Zribi M. Land Surface Remote Sensing in Urban and Coastal Areas. ISTE Press Elsevier. 2016. 377 p.
  4. Balzter H. Earth Observation for Land and Emergency Monitoring. Wiley-Blackwell. 2017. 325 p.
  5. Kalinov M.I. Metodika otsenki effektivnosti primeneniya kosmicheskikh sistem nablyudeniya. Sb. trudov 6-i Vseros. NPK «Aktualnye problemy zashchity i bezopasnosti». SPb: NPO SM. 2003. S. 53−78. (In Russian).
  6. Pikul A.I., KHegai D.K., Shpak A.V. Algoritm otsenivaniya ratsionalnosti postroeniya nizkoorbitalnoi sistemy iskusstvennykh sputnikov monitoringa  nazemnykh   obieektov. Nauchno-tekhnicheskii  vestnik   Sankt-Peterburgskogo gosudarstvennogo    universiteta informatsionnykh tekhnologii, mekhaniki i optiki. 2011. № 3(73). S. 66−70. (In Russian).
  7. Kovalenko A.Yu. Matematicheskie aspekty otsenivaniya rezultativnosti primeneniya kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli. Trudy SPIIRAN. 2017. № 53. S. 29−50. (In Russian).
  8. Andreeva D.V., Andreev G.I., Zamuruev S.N. Algoritmicheskoe obespechenie opredeleniya vremeni radiolokatsionnogo kontrolya tselevogo regiona pri zadannom urovne kratnosti. Uspekhi sovremennoi radioelektroniki. 2015. № 11. S. 29−32. (In Russian).
  9. Saulskii V.K. Ratsionalnye orbity dlya mnogopolosnogo obzora Zemli iz kosmosa. Voprosy elektromekhaniki. Trudy VNIIEM. 2015. T. 145. № 2. S. 42−56. (In Russian).
  10. Dey N., Bhatt C., Ashour A. Big Data for Remote Sensing: Visualization, Analysis and Interpretation: Digital Earth and Smart Earth. Springer. 2018(2019). 163 p.
  11. Remote Sensing of Land Use and Land Cover: Principles and Applications. Ed. by C.P. Giri. CRC Press. Taylor & Francis Group. 2012. 469 p.
  12. Computational Intelligence for Remote Sensing. Ed. by M. Grana, R. Duro. Berlin: Springer. 2008. 397 p.
  13. Kondratyev K., Kozoderov V., Smokty O. Remote Sensing of the Earth from Space. Atmospheric Correction. Berlin: Springer. 1992. 484 p.
  14. Schanda E. Physical Fundamentals of Remote Sensing. Springer. 1986. 194 p.
  15. Observing land from space: Science, customers and technology. Ed. by M.M. Verstraete, M. Menenti, J. Peltoniemi. Kluwer Academic Publishers. 2000. 335 p.
  16. Malyshev V.V., Bobronnikov V.T., Darnopykh V.V., Shidlovskii A.V. Planirovanie tselevogo funktsionirovaniya sputnikovykh sistem monitoringa: Ucheb. posobie. M.: MAI. 2002. 73 s. (In Russian).
  17. Augenstein S., Estanislao A., Guere E., Blaes S. Optimal Scheduling of a Constellation of Earth-Imaging Satellites, for Maximal Data Throughput and Efficient Human Management. Proc. of the Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS 2016). URL = http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/download/13173/12696 (accessed 11 May 2019).
  18. Burova I.G., Kalnitskaya M.A., Malevich A.V., Miroshnichenko I.D., Zhilin D.E. Iz opyta obucheniya rasparallelivaniyu vychislenii (metodicheskie zametki). Mezhdunarodnyi nauchno-issledovatelskii zhurnal. 2018. № 7(73). S. 123−127. (In Russian).
  19. Gorbunov A.V.,. Saulskii V.K. Vektornaya model obzora zemli i napravleniya ee ispolzovaniya. Voprosy elektromekhaniki. Trudy VNIIEM. 2017. T. 156. S. 21−32. (In Russian).
  20. Vishnevskii A.K., Gorbulin V.I., Letunov V.V., Polivanov V.A. Metod kvazioptimalnogo planirovaniya tselevogo primeneniya orbitalnoi gruppirovki kosmicheskikh apparatov distantsionnogo zondirovaniya Zemli v usloviyakh kriticheskogo vremeni. Elektromagnitnye volny i elektronnye sistemy. 2019. № 1. S. 57−69. (In Russian).
Date of receipt: 22 августа 2019 г.