350 rub
Journal Electromagnetic Waves and Electronic Systems №2 for 2019 г.
Article in number:
Evaluation of influence of parameters of external mechanical exposure on surface energy size of multicomponent materials
Type of article: scientific article
DOI: 10.18127/j15604128-201902-08
UDC: 538.9
Authors:

V.V. Kalmykov – Senior Lecturer, 
Kaluga branch of the Bauman MSTU
E-mail: kalmykovvv@bmstu.ru

M.V. Mousokhranov – Ph.D.(Eng.), Associate Professor, 
Kaluga branch of the Bauman MSTU
E-mail: marls77@ya.ru

E.V. Logutenkova – Senior Lecturer, 
Kaluga branch of the Bauman MSTU
E-mail: iwtbhn@mail.ru

Abstract:

To ensure the required reliability of the surfaces it is necessary to form them with certain values of microgeometry and physical and mechanical properties.
Parameters and modes of external influence on materials significantly affect the energy state of their near-surface layer, allow to predict and control this state, and thus control and operational characteristics of products.
In the conducted research external influence was carried out by-line mechanical microdeforming of a superficial layer of a material.
The surface energy was measured indirectly by estimating the contact potential difference by the static condenser method.
When studying the change in the surface energy of a material by means of its progressive microdeformation, the effect on the surface of samples from steel 20, steel 45, steel 12X13 was simulated. The effect of the microdeformation regimes on the surface energy at different values of the stride pitch (longitudinal tool feed) and the elastic recovery of the material was investigated.
As a result of the experiments it was established that in order to obtain the maximum value of the surface energy level after removing a layer of material with a depth of 300 μm, microdeformation should be performed. It was also found that with increasing row pitch for microdeformation of materials and with increasing depth of microdeformation, the amount of surface energy decreases.

Pages: 65-68
References
  1. Musokhranov M.V. Poverkhnostnaya energiya kak pokazatel kachestva poverkhnostnogo sloya. Spravochnik. Inzhenernyi zhurnal s prilozheniem. 2005. № 12 (105). S. 62−64.
  2. Musokhranov M.V., Kalmykov V.V., Avramenko M.Yu. Tekhnologicheskie predposylki povysheniya ekspluatatsionnykh kharakteristik napravlyayushchikh elementov. Fundamentalnye issledovaniya. 2016. № 8−1. S. 55−58.
  3. Malyshev E.N., Musokhranov M.V., Kalmykov V.V., Antonyuk F.I. Raspredelenie energii tekhnologicheskogo vozdeistviya pri formirovanii rabochikh poverkhnostei detalei mashin iz metallicheskikh materialov. Sovremennye problemy nauki i obrazovaniya. 2015. № 1−1. S. 58.
  4. Oleshko V.S., Pigovkin I.S. Vliyanie mekhanicheskoi obrabotki na rabotu vykhoda elektrona metallicheskikh detalei aviatsionnoi tekhniki. Oboronnyi kompleks – nauchno-tekhnicheskomu progressu Rossii. 2017. № 3 (135). S. 24−28.
  5. Goncharenko V.I., Oleshko V.S. Determining the surface energy of tools in the aviation industry. Russian Engineering Research. 2017. T. 37. № 7. S. 628−630.
  6. Shvetcov A.N., Skuratov D.L. Evolution of the residual stresses formation from fec0.15cr12ni2 steel in the part surface during the diamond smoothing. Sb. «Procedia Engineering». Ser. «Proceedings of the 3rd International Conference on Dynamics and Vibroacoustics of Machines, DVM 2016» 2017. S. 355−362.
  7. Izmailov V.V., Novoselova M.V., Chaplygin S.A On the experimental techniques for assessing the specific friction force and its parameters. Journal of Friction and Wear. 2017. T. 38. № 5. S. 369−376.
  8. Nosenko V.A., Mitrofanov A.P., Butov G.M. Impregnation of abrasive tools with foaming agents. Russian Engineering Research. 2011. T. 31. № 11. S. 1160−1163.
  9. Musokhranov M.V., Kalmykov V.V., Logutenkova E.V., Sorokin S.P. Energeticheskoe sostoyanie poverkhnostnogo sloya detalei mashin. Sovremennye naukoemkie tekhnologii. 2016. № 5−2. S. 276−279.
  10. Musokhranov M.V. Rol poverkhnostnoi energii pri formirovanii detalei v pretsizionnom mashinostroenii. Sborka v mashinostroenii, priborostroenii. 2005. № 6. S. 9−11.
  11. Kalmykov V.V., Musokhranov M.V., Logutenkova E.V., Gerasimova N.S. Energiya poverkhnostei v formirovanii sopryazhenii pri sborke izdelii. Sovremennye naukoemkie tekhnologii. 2016. № 5−2. S. 249−252.
  12. Mitrofanov A.P., Parsheva K.A. Rabota vykhoda elektrona kak parametr otsenki mekhanicheskogo sostoyaniya poverkhnosti. Nauchnoprakticheskaya konf. studentov VPI (filial) VolgGTU «Nauka molodykh: idei, rezultaty, perspektivy». 2016. S. 63−64.
  13. Arefeva L.P., Shebzukhova I.G. Electron work function and surface energy of body-centered and face-centered cubic modifications of 4d- and 5d-metals. Physics of the Solid State. 2016. T. 58. № 7. S. 1289−1294.
  14. Arefeva L.P., Shebzukhova I.G. Mezhfaznaya energiya na granitse metallicheskii kristall–rasplav. Fizika tverdogo tela. 2018. T. 60. № 7. S. 1270−1276.
  15. Arefeva L.P., Shebzukhova I.G. Poverkhnostnaya energiya tonkikh plenok tantala i niobiya pri odnoosnoi deformatsii. Fizikokhimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov. 2017. № 9. S. 32−37.
  16. Shebzukhova I.G., Arefeva L.P. Anizotropiya raboty vykhoda elektrona 3d-metallicheskikh kristallov. Izvestiya Rossiiskoi akademii nauk. Ser. Fizicheskaya. 2015. T. 79. № 6. S. 896.
  17. Goncharenko V.I., Oleshko V.S. Opredelenie velichiny poverkhnostnoi energii instrumenta v aviastroenii. STIN. 2017. № 2. S. 24−27.
  18. Kalmykov V.V., Barkov A.V. Analiticheskoe i statisticheskoe otsenivanie uprugikh deformatsii pri frezerovanii po konturu. Fundamentalnye issledovaniya. 2016. № 8−1. S. 34−38.
Date of receipt: 17 октября 2018 г.