V.N. Zhurakovsky – Ph.D.(Eng.), Associate Professor, Department SM-6, Bauman Moscow State Technical University E-mail: vnzh521@yandex.ru
A.S. Logvinenko – Engineer, Department «Information and Control Systems»,
SRI SM of Bauman Moscow State Technical University
E-mail: anna.logvinenko.bmstu@mail.ru
The problem of determining the minimum dispersion of the signal frequency estimates representing a mixture of two complex exponentials with white Gaussian noise (WGN) is solved by deriving the expression of the Cramer-Rao lower bound (CRLB). The graphs showing the dependence of the lower dispersion limit on the signal-to-noise ratio (SNR), absolute values of frequencies and sample size are given. The analysis of the obtained results is made, allowing to estimate the requirements that can be presented to the developed algorithms for estimating frequencies for signals with certain parameters (sample rate, sampling size).
- Krivosheev V.I., Lupov S.Yu. O nekotory’x vozmozhnostyax i problemax sovremennogo czifrovogo spektral’nogo analiza // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2011. № 5. S. 109−117.
- Marpl-ml. S.L. Czifrovoj spektral’ny’j analiz i ego prilozheniya: per. s angl. M.: Mir. 1990. 584 s.
- Stoica P., Moses R. Introduction to Spectral Analysis / Upper Saddle River, NJ: Prentice-Hall. 1997. 427 p.
- Frelich R.G. Kramer – Rao Bound for Gaussian Random Processes and Applications to Radar Processing of Atmospheric Signals // IEEE Transactions Geoscience and Remote Sensing. 1993. V. 31. № 6. P. 1123.
- Sobolev V.S., Feshenko A.A. Accurate Cramer-Rao Bounds for a Laser Doppler anemometer // IEEE transactions on instrumentation and measurement. 2006. V. 55. № 2. P. 659−665.
- Kay S.M. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ, USA: Prentice-Hall. 1998 (NY, USA: Springer. 1998).
- Todros K., Hero A.O. Measure-transformed quasi-maximum likelihood estimation // IEEE Trans. Signal Process. Feb. 2017. V. 65. № 3. P. 748−763.
- Zlaczkij V.T. O graniczax Rao–Kramera dlya oczenok parametrov signala LDIS // Ucheny’e zapiski CzAGI. 1980. № 3.
- Novak L.M. On the estimation of spectral parameters using burst waveforms. MIT, Lincoln laboratory (technical report). 1983.
- Cramer. A contribution to the theory of statistical estimation // Skand. Akt. Tidskr. V. 29. 1946. P. 85−94.