350 rub
Journal Electromagnetic Waves and Electronic Systems №8 for 2018 г.
Article in number:
X-band high power water loads
Type of article: scientific article
DOI: 10.18127/j15604128-201808-05
UDC: 537.86
Authors:

S.V. Kuzikov – Head of Laboratory, Institute of Applied Physics of RAS (N. Novgorod) E-mail: kuzikov@appl.sci-nnov.ru

Yu.V. Rodin – Leading Engineer, Institute of Applied Physics of RAS (N. Novgorod)

E-mail: wish26@yandex.ru

A.A. Vikharev – Research Scientist, Institute of Applied Physics of RAS (N. Novgorod) E-mail: alvikharev@appl.sci-nnov.ru

Abstract:

We develop two concepts of vacuum RF loads based on a cavity surrounded by absorbing water vessel with dielectric walls to be transparent for microwaves. We propose to use either corrugated walls of the metallic cavity or corrugated dielectric walls of the water vessel itself. These corrugations allow essentially reducing peak surface RF fields. Water cooling also provides good opportunities to operate the loads at high average RF power. The proposed loads have being simulated to satisfy the parameters: 50 MW peak/25 kW average.

Pages: 27-41
References
  1. K. Ebihara, H. Nakanishi and E. Ezura. RF high power water-loads for KEKB, Proc. of 2nd Asian PAC, Beijing. 2001. P. 633−635.
  2. D. Horan, Y. Kang. Design and construction of a 1-mw, 352-mhz rf test load // Proc. of Particle Accelerator Conference, 1997. Proceedings of the 1997 (Volume:3), 1997, pp. 3687−3689.
  3. A. Zaltsman. R&D ERL – High Power RF Systems, Collider-Accelerator Department Brookhaven National Laboratory Upton, NY 11973, 2010.
  4. http://www.birdrf.com/Products/Terminations_Loads/Coaxial-Terminations/80kW/8792_80-kW-Water-CooledTerminations.aspx#.VMDINrUcTcs
  5. M. Ebert, F.-R. Ullrich. Glycol substitute for high power rf waterloads // Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee, 0-7803-8859-3/05/$20.00 c2005 IEEE, pp. 841−843.
  6. Afsar M.N., J. Chamberlain, and G.W. Chantry. High precision dielectric measurements on liquids and solids at millimeter and submillimeter wavelength, IEEE Trans. Instrum. Meas., Vol. 25, No. 4, 290−294, Dec. 1976.
  7. Y. Wang and M.N. Afsar. MEASUREMENT OF COMPLEX PERMITTIVITY OF LIQUIDS USING WAVEGUIDE TECHNIQUES, Progress In Electromagnetics Research, PIER 42, 131−142, 2003, pp. 131−142.
  8. Jared Peacock. Millimeter Wave Dielectric Permittivity of Water at 25 C. http://mesoscopic.mines.edu/mediawiki/images/9/9f/JPHeiland07.pdf
  9. Clive M. Alabaster. The microwave properties of tissue and other lossy dielectrics, phd thesis, cranfield university college of defence technology department of aerospace, power and sensors, 161 p.
  10. V.A. Dolgashev, S.G. Tantawi and C.D. Nantista. Design of Compact Multi-Megawatt Mode Converter, SLAC--PUB-11782. http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-11782.pdf
  11. S.G. Tantawi, Ch.D. Nantista, V.A. Dolgashev, Ch. Pearson, J. Nelson, K. Jobe, J. Chan, K. Fant, J. Frisch. High-power multimode X-band rf pulse compression system for future linear colliders, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 8, 042002 (2005)
  12. Ching-Fang Yu, Tsun-Hsu Chang. High-Performance Circular TE01-Mode Converter, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 12, 2005, pp. 3794−3798.
  13. Hirshfield J.L., Bogdashov A.A., Chirkov A.V., Denisov G.G., Fix A.S., Kuzikov S.V., LaPointe M.A., Litvak A.G., Lukovnikov D.A., Malygin V.I., Nezhevenko O.A., Petelin M.I., Rodin Yu.V., Serdobintsev G.V., Shmelyov M.Y., Yakovlev V.P. Transmission Line Components for a Future Millimeter-Wave High-Gradient Linear Accelerator. NATO Science Series, II, V.203 Quasi-Optical Control of Intense Microwave Transmission (edited by J.L. Hirshfield and M.I. Petelin), Springer, Netherlands, 2005, pp. 147−163.
  14. F. Mirizzi, Ph. Bibet, S. Kuzikov. The main microwave components of the LHCD system for ITER, Fusion Engineering and Design, Vol. 66, 2003, pp. 487−490.
  15. M.A. Lobaev, O.A. Ivanov, V.A. Isaev, A.L. Vikharev. Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric, Technical Physics Letters (2009), Vol. 35, Issue 12, pp 1074−1077.
  16. A. Larionov, V. Teryaev, S. Matsumoto, Y.H. Chin. Design of Multi-Beam Klystron in X-Band, KEK-PREPRINT-2002-68, 2002.
  17. CST Microwave Studio, CST Computer Simulation Technology AG, Darmstadt, Germany, Available: http://www.cst.com (accessed 10/02/2017).
Date of receipt: 15 января 2018 г.