350 rub
Journal Electromagnetic Waves and Electronic Systems №8 for 2018 г.
Article in number:
Research of the influence of a perfectly conducting dividing fence on the mutual coupling between two parallel-plate waveguides
Type of article: scientific article
DOI: 10.18127/j15604128-201808-03
UDC: 621.372.81
Authors:

 V.N. Mitrokhin  – State Prize of Russia Laureate, Dr.Sc.(Eng.), Professor, Department «Radio Electronic Systems and Devices», Bauman Moscow State Technical University

A.A. Propastin – Electronic Engineer, JSC «SPE «Salut» (Moscow); Post-graduate Student, Department «Radio

Electronic Systems and Devices», Bauman Moscow State Technical University

E-mail: aaprop2512@mail.ru

Yu.S. Rusov – Ph.D.(Eng.), Associate Professor, Department «Radio Electronic Systems and Devices», Bauman

Moscow State Technical University; Head of Sector, SRI of Radioelectronic Technics of Bauman Moscow State

Technical University

E-mail: rusov.yu.s@gmail.com

Abstract:

In this paper an investigation of the influence of the height of an infinitely conducting fence on the coupling coefficient between two parallel-plate waveguides in which a TEM wave of vertical polarization propagates is proposed. The analysis showed that the use of an infinitely conductive fence to reduce the mutual coupling between two parallel-plate waveguides is most significant if the height of the fence is not less than 0.7λ. Since the behavior of the coupling coefficient between waveguides has a resonance character, in some cases, at a low height of the fence, the weakening of the mutual coupling may not exist. The asymptotic behavior of the curves of the coupling coefficient depends on the distance between the waveguides and their dimensions, but with a further increase in the height of the fence, the transfer coefficient decreases.

Pages: 18-26
References
  1. Vishvaksenan K.S., Mithra K., Kalaiarasan R., Raj K.S. Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Parallel Coupled-Line Resonators // IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 2146−2149.
  2. Chan-Hee Park, Eun-Suk Yang, Hae-Won Son. Reduction of mutual coupling between closely spaced microstrip antennas with H-shaped isolation wall // Progress in Electromagnetic Research Symposium (PIERS). Shanghai. 2016. P. 5055−5055.
  3. Sajjad H., Khan S., Arvas E. Mutual coupling reduction in array elements using EBG structures // International Applied Computational Electromagnetics Society Symposium - Italy (ACES). Florence. 2017. P. 1−2.
  4. Cheng Y.F., Ding X., Shao W., Wang B.Z. Reduction of Mutual Coupling Between Patch Antennas Using a Polarization-Conversion Isolator // IEEE Antennas and Wireless Propagation Letters. 2017. V. 16. P. 1257−1260.
  5. Kuravatti P., Rukmini T.S. Reduction of mutual coupling in antenna arrays using periodic structures // IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). Bangalore. 2016. P. 14−16.
  6. Li W., Liu Y., Li Y. Meta-material based mutual coupling reduction of circularly polarized array // IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo. 2016. P. 511−512.
  7. Zhang Q.L., Jin Y.T., Feng J.Q., Lv X., Si L.M. Mutual coupling reduction of microstrip antenna array using metamaterial absorber // IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). Suzhou. 2015. P. 1−3.
  8. Mailloux R. Reduction of mutual coupling using perfectly conducting fences // IEEE Transactions on Antennas and Propagation. March 1971. V. 19. P. 166−173.
  9. El-Moazzen Y.S., Shafai L. Mutual Coupling Between Parallel Plate Waveguides // IEEE G-MTT International Microwave Symposium, Boulder. CO (USA). 1973. P. 281−283.
  10. Zaghloul A., MacPhie R. On the removal of blindness in phased antenna arrays by element positioning errors // IEEE Transactions on Antennas and Propagation. September 1972. V. 20. P. 637−641.
  11. Hessel A., Knittel G. A loaded ground plane for the elimination of blindness in a phased-array antenna // Antennas and Propagation Society International Symposium. Austin. TX (USA). 1969. P. 163−169.
  12. Lee S.W. Impedance matching of an infinite phased array by dielectric sheets // Electronics Letters. October. 1966. V. 2. № 10. P. 366−368.
  13. Knittel G.H., Hessel A., Oliner A.A. Element pattern nulls in phased arrays and their relation to guided waves // Proceedings of the IEEE. November 1968. V. 56. P. 1822−1836.
  14. Neganov V.A., Osipov O.V., Raevskij S.B., Yarovoj G.P. E'lektrodinamika i rasprostranenie radiovoln: Uchebnik / Pod red. V.A. Neganova i S.B. Raevskogo. Izd. 4-e, pererab. i dop. M.: Radiotexnika. 2009. 743 s.
  15. Golubeva N.S., Mitroxin V.N. Osnovy' radioe'lektroniki sverxvy'sokix chastot: Ucheb. posobie. Izd. 2-e. M: Izd-vo MGTU im. N.E'. Baumana. 2008. 486 s.
  16. Markov G.T., Chaplin A.F. Vozbuzhdenie e'lektromagnitny'x voln. Izd. 2-e, pererab. i dop. M.: Radio i Svyaz'. 1983. 296 s.
Date of receipt: 25 июня 2018 г.