350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2018 г.
Article in number:
Electrodynamic model of the spreading surface taking into account not uniformity of the land relief
Type of article: scientific article
DOI: 10.18127/j15604128-201807-04
UDC: 621.396
Authors:

B.A. Ayukov – Ph.D.(Eng.), Associate Professor, Department of Radio Technical and Optoelectronic Complex, 

Saint-Petersburg State University of Aerospace Instrumentation

E-mail: ajukov-b-58@yandex.ru

N.A. Gladky – Ph.D.(Eng.), Associate Professor, Department of Radio Technical and Optoelectronic Complex, 

Saint-Petersburg State University of Aerospace Instrumentation

E-mail: glana@aanet.ru

A.F. Kryachko – Dr.Sc.(Eng.), Professor, Head of Department of Radio Technical and Optoelectronic Complex, 

Saint-Petersburg State University of Aerospace Instrumentation

E-mail: alex_k34.ru@mail.ru

M.E. Neveikin – Ph.D.(Eng.), Associate Professor, Department of Radio Technical and Optoelectronic Complex, 

Saint-Petersburg State University of Aerospace Instrumentation E-mail: men_guap@mail.ru

Abstract:

Justification of electrodynamic model of the spreading surface developed taking into account influence of the spreading surface is given in article. The model is developed for application in problems of design of systems of collision with the earth and also at design of onboard radar-tracking systems. The comparative analysis of the following models is carried out: continuous, facet, based on Huygens-Kirchhoff's principle, in the form of the carrying-out hemispheres and semi-cylinders of identical radius randomly located on ideally carrying out plane. The theories developed for continuous surfaces can't be directly applicable to reflection from the land surface. Their strong sensitivity of dispersion to various properties of a surface doesn't allow to receive final formulas of dispersion, uniform and general for any surface.

Pages: 19-24
References
  1. Lyalinov M.A. Electromagnetic scattering by a plane angular sector: I. Diffraction coefficients of the spherical wave from the vertex // Wave Motion. 2015. № 55. S. 10−34.
  2. Stashkevich A.I., Strigin B.C. Voprosy’ rascheta texnicheskix xarakteristik speczial’ny’x radiolinij. Ministerstvo oborony’ SSSR. 1988. 167 s.
  3. Kravczov Yu.A., Mityagina M.I., Churyumov A.N. Rasseyanie e’lektromagnitny’x voln na mezomasshtabny’x obrushivayushhixsya volnax na morskoj poverxnosti // Izvestiya RAN. Ser. Fizicheskaya. 1999. T. 63. № 12. S. 2403−2410.
  4. Dagurov P.N., Czy’bkin A.E., Chimitdorzhiev N.B. Rasprostranenie e’lektromagnitny’x voln. Ulan-Ude’. 1980. S. 38.
  5. Krasyuk N.P., Krasyuk V.N., Koblov V.A. Vliyanie troposfery’ i podstilayushhej poverxnosti na rabotu RLS. M.: Radio i svyaz’. 1988. 213 s.
  6. Kyurkchan A.G., Smirnova N.I. Matematicheskoe modelirovanie v teorii difrakczii s ispol’zovaniem apriornoj informaczii ob analiticheskix svojstvax resheniya. ID Media Pablisher. 2014. 225 s.
  7. Luebbers R.J. Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss // IEEE Transactions on Antennas and Propagation. January 1984. V. AP-32. P. 70−76.
Date of receipt: 8 октября 2018 г.