350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2018 г.
Article in number:
An algorithm of range migration compensation for sidelooking SAR
Type of article: scientific article
DOI: 10.18127/j15604128-201807-02
UDC: 621.396.96
Authors:

A.A. Monakov – Dr.Sc.(Eng.), Professor, Department of Radio Systems, 

Saint-Petersburg State University of Aerospace Instrumentation E-mail: a_monakov@mail.ru

Abstract:

Range cell migration is one of the reasons for defocusing images in radars with synthesized antenna aperture (SAR). There are two groups of signal processing algorithms for SAR, which compensate for the migrations. The first group includes algorithms that use the recalculation of the signal from the coordinate system «slant range - azimuth» into the system «along-track range – cross-track range» using methods of function interpolation. The disadvantage of these algorithms is the large computational costs. The algorithms of the second group do not use interpolation. However, they are synthesized on the assumption that the transmitted signal is a chirp pulse, and its matched filtering is realized when the algorithm itself is implemented. In the article an algorithm is synthesized that is free from these shortcomings: the algorithm is applicable for processing of any wideband signals, the matched filtering is realized at the beginning of processing, separately from the algorithm. Verifying the quality of the algorithm by mathematical simulation has proven its high efficiency.

Pages: 6-12
References
  1. Verba V.S., Neronskij L.B., Osipov I.G., Turuk V.E’. Radiolokaczionny’e sistemy’ zemleobzora kosmicheskogo bazirovaniya / Pod red. V.S. Verby’. M.: Radiotexnika. 2010. 681 s.
  2. Cumming I.G., Bennett J.R. Digital processing of SEASAT SAR data // Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. Washington. DC. USA. April 1979. P. 45−47.
  3. Lin M.Y., Wu C. A SAR correlation algorithm which accommodates large range migration // IEEE Trans. Geosci. Remote Sensing. November 1984. V. 22. № 6. P. 592−597.
  4. Chang C.Y., Jin M., Curlander J.C. Squint mode processing algorithms // Proc. IGARSS. Vancouver (Canada). July 1989. P. 1702−1706.
  5. Smith A.M. A new approach to range-Doppler SAR processing // Int. J. Remote Sensing. February 1991. V. 12. № 2. P. 235−251.
  6. Franceschetti G., Schirinzi G. A SAR processor based on two-dimensional FFT codes // IEEE Trans. Aerospace Electron. Syst. March 1990. V. 26. № 2. P. 356−366.
  7. Cafforio C., Prati C., Rocca F. SAR data focusing using seismic migration techniques // IEEE Trans. Aerospace Electron. Syst. March 1991. V. 27. № 2. P. 194−207.
  8. Franceschetti G., Lanari R., Marzouk E.S. Aberration free SAR raw data processing via transformed grid predeformation // Proc. IGARSS, Tokyo (Japan). August 1993. P. 1593−1595.
  9. Stolt R.H. Migration by Fourier transform // Geophysics. January 1978. V. 43. № 1. P. 23−48.
  10. Runge H., Bamler R. A novel high precision SAR focusing algorithm based on chirp scaling // Proc. IGARSS. Houston. TX. May 1992. P. 372−375.
  11. Cumming I.G., Wong F., Raney K. A SAR processing algorithm with no interpolation // Proc. IGARSS. Tokyo (Japan). August. 1993. P. 376−379.
  12. Wong F., Cumming I.G., Raney R.K. Processing simulated RADARSAT SAR data with squint by a high precision algorithm // Proc. IGARSS. Tokyo (Japan). August 1993. P. 1176−1178.
  13. Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F. Precision SAR processing without interpolation for range cell migration correction // IEEE Trans. Geosci. Remote Sensing. July 1994. V. 32. № 4. P. 786−799.
  14. Moreira A., Huang Y. Airbome SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation // IEEE Trans. Geosci. Remote Sensing. September 1994. V. 32. № 5. P. 1029−1040.
  15. Moreira A., Mittermayer J., Scheiber R. Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes // IEEE Trans. Geosci. Remote Sensing. September 1996. V. 34. № 5. P. 1123−1136.
  16. Vladimirov V.S. Obobshhenny’e funkczii v matematicheskoj fizike. M.: Nauka. 1979. 320 s.
Date of receipt: 8 октября 2018 г.