350 rub
Journal Electromagnetic Waves and Electronic Systems №2 for 2018 г.
Article in number:
Bandgap reference for CMOS technologies
Type of article: scientific article
UDC: 621.3.049.77
Authors:

S.V. Ryzhov – Master, «Design and manufacturing of electronic equipment», Kaluga branch of the Bauman MSTU E-mail: sergey.righov@gmail.com

V.V. Andreev – Dr.Sc.(Eng.), Professor, «Design and manufacturing of electronic equipment», 

Kaluga branch of the Bauman MSTU

E-mail: vladimir_andreev@bmstu.ru

E.V. Vershinin – Ph.D.(Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU E-mail: yevgeniyv@mail.ru

Abstract:

In this paper developed the design of a bandgap reference, implemented in 0.6 um CMOS technology. The electric model of the developed voltage reference in Cadence Virtuoso is obtained using spice model of elements for 0.6 um CMOS technology. The temperature coefficient of voltage of the voltage reference in the temperature range −60 … 125°C is 7.05 ppm/°C. The bandgap reference uses horizontal p-n-p transistors based on the drain-source regions of MOSFETs within the basic 0.6 μm CMOS process.

Pages: 4-9
References
  1. Sze S.M., Lee M.K. Semiconductor Devices. Physics and Technology. John Wiley & Sons Singapore Pte. Ltd. Ed. 3rd. 2013. 582 p.
  2. Razavi B. Design of Analog CMOS Integrated Circuits. Tata Mcgraw Hill. 2002. 782 p.
  3. Sedra A., Smith K. Microelectronic circuit. Oxford: Oxford university press. 2004. 1392 p.
  4. Hilbiber D.F. A new semiconductor voltage standard // Dig. Techn. Papers. ISSCC. 1964. V. 7. P. 32−33.
  5. Widlar R.J. New Developments in IC Voltage Regulators // IEEE Journal of solid-state circuits. 1971. V. 6. P. 2−7.
  6. Starchenko E.I. Kuzneczov P.S. Istochniki opornogo napryazheniya na osnove zapreshhennoj zony’ kremniya // Izvestiya YuFU. Ser. Texnicheskie nauki. 2011. № 2. S. 105−110.
  7. Ry’zhov S.V. Andreev V.V. Povy’shenie nagruzochnoj sposobnosti schetverennogo komparatora napryazheniya 1401SA1 // Nauka, texnika i obrazovanie (e’lektronny’j zhurnal). 2017. № 10. http://nto-journal.ru/uploads/articles/be9e508edadbdc3f7fe3b5a985b92dcd.pdf.
  8. Ry’zhov S.V. Kuzneczov V.V. Modelirovanie funkczional’ny’x uzlov KMOP IMS v SAPR Qucs-0.0.19S // Nauka, texnika i obrazovanie (e’lektronny’j zhurnal). 2016. № 1. http://nto-journal.ru/uploads/articles/74738b5c1f7d198c3be8177b8d8cab75.pdf.
  9. Simon L., Yue F. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics. Springer. 2012. 292 p.
  10. Yue Fu, Zhanming Li, Wai Tung Ng, Johnny K.O. Sin. Integrated Power Devices and TCAD Simulation (Devices, Circuits, and Systems). CRC Press. 2014. P. 389.
  11. Andreev V.V., Ry’zhov S.V., Romanov A.V. Modelirovanie texnologicheskogo proczessa formirovaniya by’strodejstvuyushhix diodov // E’lektromagnitny’e volny’ i e’lektronny’e sistemy’. 2017. № 5. S. 34−39.
  12. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A. Modification of Gate Dielectric in MOS Devices by Injection-Thermal and Plasma Treatments // Acta Phys. Pol. A. 2014. V. 125. № 6. P. 1371−1373.
  13. Andreev V.V., Bary’shev V.G., Bondarenko G.G., Stolyarov A.A., Shaxnov V.A. Issledovanie zaryadovoj degradaczii MDP-struktur v sil’ny’x e’lektricheskix polyax metodom upravlyaemoj tokovoj nagruzki // Mikroe’lektronika. 2000. T. 29. № 2. S. 105−112.
  14. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A., Andreev D.V. Modification and Reduction of Defects in Thin Gate Dielectric of MIS Devices by Injection-Thermal and Irradiation Treatments // Phys. Status Solidi C. 2015. V. 12. № 1−2. P. 126−130.
  15. Andreev V.V. Plazmennaya i inzhekczionnaya modifikacziya e’lektrofizicheskix xarakteristik MDP-struktur // Fizika i ximiya obrabotki materialov. 2001. № 6. S. 47−53.
  16. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. Modification of MIS Devices by Irradiation and HighField Electron Injection Treatments // Acta Phys. Pol. A. 2017. V. 132. № 2. P. 245−248.
  17. Datasheet 0.6 um Process Family.  https://www.xfab.com/fileadmin/X-FAB/Download_Center/Technology/Datasheet/XT06_Datasheet.pdf.
  18. Brokaw A.P. A Simple Three-Terminal IC Bandgap Reference // IEEE Journal of solid-state circuits. 1974. V. 9. P. 388−393.
  19. Mok  P.K.T., Leung  K.N. Design considerations of recent advanced low voltage low temperature coefficient CMOS bandgap voltage reference // IEEE Custom Integrated Circuits Conference. 2004. P. 635−642.
  20. Xorovicz P., Xill U. Iskusstvo sxemotexniki. M: Binom. 2016. 706 s.
  21. Allen P. Holberg D. CMOS Analog Circuit Design. OUP USA. 2012. 784 p.
  22. Hafiz S.A., Shafiullah Md., Chowdhury S.A. Design of a Simple CMOS Bandgap Reference // International Journal of Electrical & Computer Sciences IJECS-IJENS. 2010. V. 10. P. 6−9.
  23. Jing-Hu L., Xing-Bao Z., Ming-Yan Y. A 1.2 V piecewise curvature-corrected bandgap reference in 0.5 μm CMOS process // IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2011. P. 1118−1122.
Date of receipt: 20 февраля 2018 г.