350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2017 г.
Article in number:
The regularities of the tiding acceleration in the conditions of microgravitation
Type of article: scientific article
UDC: 523.3+539.6
Authors:

B.M. Loginov – Dr. Sc. (Phys.-Math.), Professor, Kaluga branch of the Bauman MSTU E-mail: bmloginov@mail.ru

A.P. Korzhavyy – Dr. Sc. (Eng.), Professor, Kaluga branch of the Bauman MSTU E-mail: fn2kf@list.ru

V.I. Strelov – Dr. Sc. (Phys.-Math.), Director of SRC «Space Materials» at Institute of Crystallography RAS (Kaluga) E-mail: fn1kf@list.ru

M.B. Loginova – Ph. D. (Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU E-mail: bmloginov@mail.ru

E.V. Maslov – Undergraduate, Kaluga branch of the Bauman MSTU E-mail: fn1kf-evm@list.ru

K.G. Nikiforov – Dr. Sc. (Phys.-Math.), Professor, Kaluga branch of the Bauman MSTU E-mail: fn2kf@list.ru

Abstract:

Based on the developed computing complex for observation points with different geographical coordinates, the time dependences of the tidal acceleration due to gravitational fluctuations in the Earth-Moon, Earth-Sun and Earth-Moon-Sun systems are analyzed. The characteristic particularities in the time dependences of tidal acceleration, the role and influence of different factors on their appearance are established.

Pages: 36-47
References
  1. Stutte G.W., Monje O., Hatfield R.D., Paul A.L., Ferl R.J. Simone C.G. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat // Planta. 2006. V. 224. P. 1038−1049.
  2. Paulsen K., Thiel C., Timm J. Microgravity-induced alterations in signal transduction in cells of the immune system // Acta Astronautica. 2010. V. 67. № 9−10. P. 1116−1125.
  3. Strelov V.I., Zaxarov B.G., Artem’ev V.K. Vliyanie orientaczii vektora gravitaczii otnositel’no fronta kristallizaczii na mikro- i makro- odnorodnost’ kristallov poluprovodnikov, vy’rashhenny’x v zemny’x i kosmicheskix usloviyax // Poverxnost’. Rentgenovskie, sinxrotronny’e i nejtronny’e issledovaniya. 2009. № 2. S. 25−31.
  4. Pardo S.J., Patel M.J., Sykes M.C. Simulated microgravity using the random positioning machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts // Am. J. Physiology - Cell Physiology. 2005. V. 288. № 6. P. C1211−1221.
  5. Loginov B.M., Proskurnin A.N., Vershinin E.V. Zakonomernosti proczessov dvizheniya dislokaczij cherez ansambli dislokaczij lesa i tochechny’x prepyatstvij v usloviyax odnovremennogo dejstviya staticheskoj i cziklicheskoj nagruzki // Fizika tverdogo tela. 2002. T. 44. № 10. S. 1799−1801.
  6. Salmi M.L., Roux S.J. Gene expression changes induced by space flight in single-cells of the fern ceratopteris richardii // Planta. 2008. V. 229. P. 151−159.
  7. Loginov B.M., Degtyarev V.T., Tyapunina N.A. Modelirovanie dvizheniya dislokaczij cherez les koleblyushhixsya dislokaczij s uchetom dal’nodejstvuyushhix polej napryazhenij v kristallax m reshetkoj NACL // Kristallografiya. 1988. T. 33. № 1. S. 163−16.
  8. Strelov V.I., Kuranova I.P., Zaxarov B.G., Voloshin A.E’. Kosmicheskaya kristallizacziya: rezul’taty’ i perspektivy’ // Kristallografiya. 2014. T. 59. № 6. S. 863−872.
  9. Zaxarov B.G., Strelov V.I., Osip’yan Yu.A. Problemy’, perspektivy’ i al’ternativy’ vy’rashhivaniya monokristallov poluprovodnikov v kosmose // Poverxnost’. Rentgenovskie, sinxrotronny’e i nejtronny’e issledovaniya. 2009. № 2. S. 3−10.
  10. Korzhavy’j A.P., Loginov B.M., Loginova M.B., Belov Yu.S. Issledovanie svojstv polimerny’x kompoziczionny’x materialov na osnove uglerodny’x volokon i nanotrubok // Nanotexnologii: razrabotka i primenenie – XXI vek. 2014. T. 6. № 1. S. 34−46.
  11. Nislow C., Lee A.Y., Allen P.L., Giaever G., Smith A., Gebbia M., Stodieck L.S., Hammond J.S., Birdsall H.H. Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight // BioMed Research International. 2015. 10 p. Article ID 976458.
  12. Ward N.E., Pellis N.R., Semyon A. Risin S.A., Risin D. Microgravity-induced changes in gene expression in activated to lymphocytes involve multiple regulatory pathways // Gravitational and Space Biology. 2006. V. 19. P. 151−152.
  13. Hammond T.G., Lewis F.C., Goodwin T.J., Linnehan R.M., Wolf D.A., Hire K.P., Campbell W.C., Benes E., O’Reilly K.C., Globus R.K. Gene expression in space // Nat. Med. 1999. V. 5. P. 359−384.
  14. Loginov B.M., Tolsty’x S.V. Zakonomernosti deformaczionnogo uprochneniya, obuslovlennogo kompoziczionny’mi ansamblyami dislokaczij lesa i tochechny’x prepyatstvij // Kristallografiya. 1993. T. 38. № 5. S. 26−33.
  15. Strelov V.I., Zaxarov B.G., Bezbax I.Zh., Sosfenov N.I. Kristallizacziya belka lizoczima v preczizionno-upravlyaemom gradiente temperatury’ // Kristallografiya. 2008. T. 53. № 1. S. 145−148.
  16. Korzhavyi A.P., Loginov B.M., Loginova M.B., Maramygin K.V., Fedoseev I.V. Simulation diamond whiskers synthesis processes under soft conditions // Naukoemkie texnologii. 2013. T. 14. № 7. 004−019.
  17. Wilson J.W., Ott C.M., Höner K., Ramamurthy R., Quick L., Porwollik S., Cheng P., McClelland M., Tsaprailis G., Radabaugh T. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq // Proc. Natl. Acad. Sci. 2007. V. 104. P. 16299−16304.
  18. Proxorov I.A., Zaxarov B.G., Strelov V.I., Ratnikov V.V., Shul’pina I.L. Konczentracziya i strukturny’e neodnorodnosti v monokristallax GE(GA), vy’rashhenny’x v usloviyax, modeliruyushhix vozmushhayushhie faktory’ mikrogravitaczii // Poverxnost’. Rentgenovskie, sinxrotronny’e i nejtronny’e issledovaniya. 2005. № 6. S. 23−27.
  19. Loginov B.M., Eremeev A.V. Modelirovanie dvizheniya dislokaczij cherez gibkij i reagiruyushhij les dislokaczij v oblasti kriticheskoj plotnosti dislokaczij lesa // Fizika tverdogo tela. 1986. T. 28. № 6. S. 1896−1898.
  20. Zhang X., Nan Y., Wang H. Model microgravity enhances endothelium differentiation of mesenchymal stem cells // Naturwissenschaften. 2013. V. 100. № 2. P. 125−133.
  21. Wuest S.L., Richard S., Walther I. A novel microgravity simulator applicable for three-dimensional cell culturing // Microgravity Science and Technology. 2014. V. 26. № 2. P. 77−88.
  22. Damm T.B., Walther I., Wuest S.L., Sekler J., Egli M. Cell cultivation under different gravitational loads using a novel random positioning incubator // Biotechnology and Bioengineering. 2014. V. 111. № 6. P. 1180−1190.
  23. Tabony J., Rigotti N., Glade N., Cortes S. Effect of weightlessness on colloidal particle transport and segregation in selforganising microtubule preparations // Biophysical Chemistry. 2007. V. 127. № 3. P. 172−180.
  24. Todd P. Gravity-dependent phenomena at the scale of the single cell // ASGSB Bulletin. 19989. V. 2. P. 95−113.
  25. Hoson T., Soga K., Mori R., Asiki M., Nakamura Y., Wakabayashi K., Kamisaka S. Stimulation of elongation growth and cell wall loosening in rice coleoptiles under microgravity conditions in space // Plant Cell Physiology. 2002. V. 43. P. 1067−1071.
  26. Fitzgerald W., Chen S., Walz C., Zimmerberg J., Margolis L., Grivel J.C. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the international space station // In Vitro Cell. Dev. Biol. Anim. 2009. V. 45. P. 622−632.
  27. http://ssd.jpl.nasa.gov/?ephemerides.
Date of receipt: 16 августа 2017 г.