350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2017 г.
Article in number:
The regular procedure of minimization of the majority element
Authors:
A.S. Nikolaev - Ph. D. (Eng.), Associate Professor, Department «Computer systems and networks», Kaluga branch of the Bauman MSTU
E-mail: nikolanta@yandex.ru
A.E. Aksenov - Design Engineer, JSC «Typhoon» (Kaluga)
E-mail: rtsys@mail.ru
Abstract:
The majority element is widely used during creation of various digital circuits, in particular, in data transmission systems. At the same time creation of the majority element having many inputs is of interest. Complexity of functions of multiport majority elements doesn\'t al-low to carry out minimization of its function by classical methods. In article partition of the general formula describing function of a ma-jority element on groups of simpler functions is made. At the same time it is used cyclic properties of the description of a majority ele-ment. The formula describing operation of such group is much simpler than the formula describing a majority element in general there-fore it is simpler to minimize it. Because of recurrence of groups it is easy to construct the formula describing any of groups, knowing a formula angering one of groups. For this purpose it is enough to trade places function arguments. The general formula describing a ma-jority element is a disjunction of the functions describing groups. It allows on the one hand, to receive the description of a composite function in the form of a set of simpler functions, and on the other hand to make minimization of function of many arguments. In article examples of minimization of function of a majority element for such quantity of arguments which doesn\'t give in to minimization by clas-sical methods are given.
Pages: 42-46
References
- Berlekehmp EH. Algebraicheskaja teorija kodirovanija: Per. s angl. / Pod red. S.D. Bermana. M.: Mir. 1971. 477 s.
- Piterson U., Uehldon EH. Kody, ispravljajushhie oshibki: Per. s angl. / Pod red. R.L. Dobrushina i I.S. Samojjlenko. M.: Mir. 1976. 594 s.
- Kassami T., Tokura N., Ivadari E., Inagaki JA. Teorija kodirovanija: Per. s japon. / Pod red. B.S. Cybakova i I.S. Gelfanda. M.: Mir. 1978. 576 s.
- F. Dzh. Mak-Viljams, N. Dzh. A. Sloehn. Teorija kodov, ispravljajushhikh oshibki: Per. s angl. / Pod red. L.A. Vassalygo. M.: Svjaz. 1979. 744 s.
- Dzh. Klark ml., Dzh. Kehjjn. Kodirovanie s ispravleniem oshibok v sistemakh cifrovojj svjazi: Per. s angl. / Pod red. B.S. Cybakova. M.: Radio i svjaz. 1987. 391 s.
- Kolesnik V.D., Mironchikov E.T. Dekodirovanie ciklicheskikh kodov. M.: Svjaz. 1968. 252 s.
- Messi Dzh. Porogovoe dekodirovanie: Per. s angl. / Pod red. EH.L. Blokha. M.: Mir. 1966. 207 s.
- Karpov JU.G. Teorija avtomatov. SPb.: Piter. 2002. 206 s.
- Nikolaev A.S. Minimizacija mazhoritarnogo ehlementa v bazise I‑ILI // Sb. statejj Mezhdunar. nauchno-prakticheskojj konf. «Sovremennaja nauka: Teoreticheskijj i prakticheskijj vzgljad». Ufa. 25 dekabrja 2014. V 2 chastjakh. CH. 2. Ufa. Aehterna. 2014. S. 54−56.
- Nikolaev A.S. Minimizacija skhemy mazhoritarnogo ehlementa // EHlektromagnitnye volny i ehlektronnye sistemy. 2016. T. 21. № 7. S. 32−36.