350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2017 г.
Article in number:
Schematic simulation in modern EDA
Authors:
V.E. Drach - Ph. D. (Eng.), Associate Professor, Department «Design and manufacturing of electronic equipment», Kaluga branch of the Bauman MSTU E-mail: drach@bmstu-kaluga.ru A.A. Korneev - Undergraduate, Department «Design and manufacturing of electronic equipment», Kaluga branch of the Bauman MSTU E-mail: sas825@yandex.ru I.V. Chukhraev - Ph. D. (Eng.), Associate Professor, Head of Department «Computer systems and networks», Kaluga branch of the Bauman MSTU E-mail: igor.chukhraev@mail.ru
Abstract:
Electronic circuit simulation uses mathematical models to replicate the behavior of an actual electronic device or circuit. Simulation software allows for modeling of circuit operation and is an invaluable analysis tool. Simulating a circuit-s behavior before actually building it can greatly improve design efficiency by making faulty designs known as such, and providing insight into the behavior of electronics circuit designs. In particular, for integrated circuits, the tooling is expensive, breadboards are impractical, and probing the behavior of internal signals is extremely difficult. Therefore, almost all IC design relies heavily on simulation. The most well known analog simulator is SPICE. Some electronics simulators integrate a schematic editor, a simulation engine, and on-screen waveforms, and make «what-if» scenarios easy and instant. They also typically contain extensive model and device libraries. These models typically include transistor and IC models, generic components such as resistors, capacitors, inductors and transformers, user defined models (such as controlled current and voltage sources, or models in Verilog A or VHDL-AMS). When choosing the certain software for schematic analysis, one have to take into account convenience, GUI, speed and also how well the software can predict physical reality.
Pages: 36-41
References

 

  1. Markin A.V. Polesskijj S.N., ZHadnov V.V. Metody ocenki nadezhnosti ehlementov mekhaniki i ehlektromekhaniki ehlektronnykh sredstv na rannikh ehtapakh proektirovanija // Nadezhnost. 2010. № 2 (33). S. 63−70.
  2. Makarenko V.V., Spivak V.M., Batina O.A. On the choice of parameters of the high-frequency devices - simulation in Ni Multisim // International Scientific and Practical Conference World science. 2016. T. 1. № 6 (10). S. 16−18.
  3. Malyshev A.A. Primenenie paketa programm Multisim 10 v uchebnom processe // Nauchnyjj vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskojj aviacii. 2008. № 137. S. 51−55.
  4. Brinson M., Kuznetsov V. Qucs-0.0.19S: A new open-source circuit simulator and its application for hardware design // Proceedings of International Siberian Conference on Control and Communications (SIBCON 2016). 2016. S. 7491696.
  5. Kuznecov V.V. Simuljator ehlektronnykh skhem s otkrytym iskhodnym kodom Qucs: osnovnye vozmozhnosti i osnovy modelirovanija // Komponenty i tekhnologii. 2015. № 3. S. 114−120.
  6. Kuznecov V.V., Krjuchkov N.M. Qucs: Ispolzovanie svobodnogo PO dlja modelirovanija ehlektronnykh skhem v uchebnom processe // Tezisy dokladov XI konf. razrabotchikov svobodnykh programm. Kaluga. 26−28 sentjabrja 2014. M.: Alt Linuks. 2014.
  7. Brinson M.E., Kuznetsov V. A new approach to compact semiconductor device modeling with Qucs Verilog-A analogue module synthesis // International Journal of Numerical Modeling: Electronic Networks, Devices and Fields. 2016.
  8. Baginski M.E., Lu H., Caudle B.T., Kirkici H. Optimal Design of an N-Stage Nonlinear Transmission Line Based on Genetic Algorithm and LTspice // IEEE Transactions on Plasma Science. 2013. V. 41. № 8. P. 2408−2414.
  9. Engelhardt M. SPICE differentiation // LT Journal of Analog Innovation. 2015. V. 1. P. 10−16.
  10. Tomaszewski D., Malesińska J., Gluszko G. Simple Methods of Threshold Voltage Parameter Extraction for MOSFET Models // Proceedings of 22nd International Conference Mixed Design of Integrated Circuits and Systems (MIXDES 2015). 2015. P. 222−226.
  11. Tomaszewski D., Gluszko G., Brinson M., Kuznetsov V., Grabinski W. FOSS as an Efficient Tool for Extraction of MOSFET Compact Model Parameters // Proceedings of 23rd International Conference Mixed Design of Integrated Circuits and Systems (MIXDES 2016). 2016. P. 68−73.
  12. Drach V.E., Rodionov A.V., CHukhraev I.V., Kuznecova D.A. Modelirovanie antennojj reshetki na shirokopolosnykh izluchateljakh // EHlektromagnitnye volny i ehlektronnye sistemy. 2016. T. 21. № 1. S. 74−77.
  13. CHukhraev I.V., Drach V.E., Rodionov A.V. Modelirovanie diagrammy napravlennosti volnovodno-shhelevogo izluchatelja X‑diapazona // Izvestija Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2015. № 12−1. S. 6−13.
  14. Drach V.E., Larin A.A., Rodionov A.V., CHukhraev I.V. Modelirovanie volnovodno-shhelevogo izluchatelja s asimmetrichnym amplitudnym raspredeleniem // EHlektromagnitnye volny i ehlektronnye sistemy. 2014. T. 19. № 10. S. 45−49.
  15. Drach V.E., CHukhraev I.V., JAshin A.A. Modelirovanie usilitelja moshhnosti diapazona SVCH // Radiopromyshlennost. 2011. № 1. S. 41−50.