350 rub
Journal Electromagnetic Waves and Electronic Systems №2 for 2017 г.
Article in number:
Rectangular waveguide with impedance walls: the mode matching technique
Authors:
M.V. Davidovich - Dr. Sc. (Phys.-Math.), Professor, Department of Radiotechnique and Electrodynamics, Saratov State University named after N.G. Chernyshevsky E-mail: DavidovichMV@info.sgu.ru
Abstract:
The rectangular and parallel-plate waveguides dispersion equations based on the mode matching technique are obtained as also their approximate solutions for impedance walls. The general case of wall-s tensor impedances, the laws of dispersion and loss are consi-dered. In the general case, you can enter four different tensor surface impedance on each of the walls. It is shown that the active values of the impedances lead to complex propagation constant in the whole range, including below the cutoff and the formation of hybrid modes. The presence of the impedance of the walls leads to the leakage of the waves from channel in them, changes the dispersion, including the slowdown and the possibility of occurrence of backward waves. The given impedance of the walls are essential to the waveguides in the millimetre range and is necessary in the terahertz range, as there are significantly changes of dispersion as compared with the perfectly conducting case. The rectangular and parallel plate waveguides with impedance walls have been considered. The complex dispersion equation based on the method of mode-matching technique are obtained and their solutions are studied. It is shown that the fast normal eigenmodes become quasieigen ones, hybrid, and damped (complex), the distribution of which is possible with attenuation across all frequencies. It is possible not only fast, but also slow wave. For rectangular waveguide you can enter eight different scalar impedances at the walls, considering them to be anisotropic. In general, you should classify modes as HEmn and EHmn. An example of solutions of the dispersion equation in complex region by the method of iterations.
Pages: 38-47
References

 

  1. Goldshhtejjn L.D., Zernov N.V. EHlektromagnitnye polja i volny. M.: Sov. radio. 1971. 654 s.
  2. Vajjnshtejjn L.A. EHlektromagnitnye volny. M.: Radio i svjaz. 1988. 440 s.
  3. Silin R.A. Periodicheskie volnovody. M.: Fazis. 2002. 438 s.
  4. Davidovich M.V., Stefjuk JU.V. Integralnye uravnenija dlja fotonno-kristallicheskikh volnovodov // Optika i spektroskopija. 2010. T. 109. № 4. S. 643−655.
  5. Davidovich M.V. Uluchshenie samofiltracii mod v polykh volnovodakh s mnogoslojjnojj magnitodiehlektricheskojj obolochkojj // REH. 1994. T. 39. № 1. S. 53−61.
  6. Belokopytov G.V. Volny v napravljajushhikh strukturakh. Ucheb. posobie. Fizicheskijj fakultet MGU. 2010. 122 s.
  7. Davidovich M.V. Vtekajushhie i vytekajushhie nesobstvennye mody - analiz dissipativnykh dispersionnykh uravnenijj i volna Cenneka. Saratov: Izd-vo Saratovskogo un-ta. 2014. 104 s.
  8. Eshram I.A., Kishk A.A., Yakovlev A.B., Glisson A.W. Rectangular Waveguide with dielectric-filled corrugations supporting backward waves // IEEE Trans. 2005. V. MTT-53. №. 11. P. 3298−3303.
  9. Landau L.D., Livshic E.M. EHlektrodinamika sploshnykh sred. M.: Nauka. 1982. 624 s.
  10. Kotelnikov I.A. O zatukhanii v volnovode // ZHTF. 2004. T. 74. № 9. S. 91−96.
  11. Dybdal R.B., Peters L., Peake W.H. Rectangular waveguide with impedance walls // IEEE Trans. 1971. V. MTT-19. № 1. P. 2−9.
  12. Markov G.T., CHaplin A.F. Vozbuzhdenie ehlektromagnitnykh voln. M.: Radio i svjaz. 1983. 296 s.
  13. Vajjnshtejjn L.A. Otkrytye rezonatory i otkrytye volnovody. M.: Sov. radio. 1966. 476 s.
  14. Davidovich M.V. Iteracionnye metody reshenija zadach ehlektrodinamiki. Saratov: Izd-vo Saratovskogo un-ta. 2014. 240 s.