350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2017 г.
Article in number:
Space-based detection of the coherent microwave radiation from the high-power atmospheric sources
Authors:
K.S. Mozgov - Ph. D. (Phys.-Math.), Head of Department, OJC «RPC«PSI» (Moscow) E-mail: mks150360@mail.ru V.F. Fedorov - Dr. Sc. (Phys.-Math.), Professor, National Research Nuclear University «MEPhI» (Moscow) E-mail: fvf48@yandex.ru
Abstract:
The questions related to selection of the optimal spectral range for the space-based detection of high-power electromagnetic radiation from the atmospheric sources including lightning discharges at the return stroke initial stages, high-power explosions, accompanied by the asymmetric gamma-ray quantum ejection and gamma-ray quantum double sources are considered. In case of spectral range selection for spacecraft onboard detection the following main factors have been considered: propagation losses in the Earth atmosphere; attenuation and transformation during ionosphere propagation; the level and spectral distribution of the natural noises and the artificial interference. It is presented that in the 1−10 GHz frequency band (30−3 cm wavelength band) the microwave radiation absorption and the external interference appeared to be the minimal, so it is reasonable to select the operational frequency of the radiometric complex for space-based microwave signal detection from the mentioned electromagnetic radiation waveband. For the point gamma-ray quantum pulse source with the low asymmetry of ejection, placed on the Earth surface, onboard antenna tem-perature estimation has been carried out for the spacecraft at 20000 km altitude. In case of λ = 30 cm radiation wavelength and Seff = 1 m2 receiving antenna effective area we get Ta ≈ 4.2-105 K antenna temperature estimation, greatly exceeding effective thermal radio-frequency radiation noise temperature of the Earth surface and the atmosphere.
Pages: 4-9
References

 

  1. Fedorov V.F., Kotov JU.B., Mozgov K.S. i dr. Mikrovolnovoe izluchenie jadernogo vzryva. M.: Librokom. 2012. 304 s.
  2. Vagin JU.P., Mozgov K.S., Semenova T.A. i dr. Generacija kogerentnogo sverkhvysokochastotnogo izluchenija moshhnymi atmosfernymi istochnikami // EHlektromagnitnye volny i ehlektronnye sistemy. 2011. № 3. T. 16. S. 81−87.
  3. Vagin JU.P., Kotov JU.B., Mozgov K.S. i dr. Svervysokochastotnoe tormoznoe izluchenie vzryvov, soprovozhdajushhikhsja vybrosom gamma-kvantov // EHlektromagnitnye volny i ehlektronnye sistemy. 2011. № 3. T. 16. S. 75−80.
  4. Pecker J.C. Space Observatories. Dordrecht: D. Reide1 Publishing Company. 1970.
  5. Savochkin A.A. Sputnikovye sistemy svjazi: uchebnoe posobie. Sevastopol: Izd-vo SevNTU. 2012. 113 s.
  6. Fedorov V.F. Mikrovolnovoe izluchenie, vozbuzhdaemoe v vozdukhe vysokoehnergetichnymi nestacionarnymi istochnikami // Fizicheskie principy opredelenija parametrov sostojanija atmosfery i okeana // Sb. nauch. trudov. № 0186.0076148. M.: Izd-vo MIFI. 1991. S. 17−32.
  7. Fedorov V.F. EHMI v mikrovolnovom diapazone, vozbuzhdaemyjj asimmetrichnym nestacionarnym istochnikom gamma-izluchenija // Izvestija VUZov. Ser. Radiofizika. 1991. T. 34. № 10−12. S. 1116−1119.
  8. Fedorov V.F. Mikrovolnovoe izluchenie vozdushnojj plazmy, obrazovannojj istochnikom dlinnoprobezhnogo izluchenija. Preprint MIFI. 038-90. M.: Izd-vo MIFI. 1990. 20 s.
  9. ZHemerev A.V., Stepanov B.M. Pole gamma-izluchenija ot istochnika nejjtronov v vozdukhe. M.: EHnergoatomizdat. 1987. 224 s.
  10. Vagin JU.P., Stal N.L., KHokhlov V.D., CHernojarskijj A.A. EHlektrofizicheskie i optikofizicheskie svojjstva vozdukha, ionizirovannogo korotkim impulsom bystrykh ehlektronov // Izvestija VUZov. Ser. Radiofizika. 1987. T. 30. № 6. S. 720−728.