350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2016 г.
Article in number:
Autocorrelation analysis of absorption spectra of electromagnetic radiation by molecules of polycyclic compounds in petahertz region
Keywords:
polycyclic compounds
absorption spectrum
relative empirical autocorrelation parameter μ
ionization potential
electron affinity
correlation
Authors:
E.A. Kovaleva - Ph. D. (Chem.), Associate Professor, Ufa State Petroleum Technological University
E-mail: kovaleva-ugntu@yandex.ru
M.Yu. Dolomatov - Dr. Sc. (Chem.), Professor, Physico-Technical Institute of Bashkir State University (Ufa)
E-mail: mdolomatov@bk.ru
Abstract:
Considered statistical Radiophysics approach to the study of the electronic absorption spectra of the electromagnetic radiation of complex molecular systems, molecules of polycyclic compounds. The energy spectrum of the molecule presented in the form of the autocorrelation function, frequency-dependent electronic transitions. The autocorrelation function gives a measure of dependence be-tween two States of the molecule. Under this approach to establish a relation between the ionization potentials, electron affinity relative to the empirical autocorrelation parameter μ, which is equal to the ratio of the energy spectrum in the ultraviolet region to the energy of the whole electronic spectrum. In a logarithmic coordinate system, μ is the parameter characterizes the ratio of the magnitude of the absorption of electromagnetic energy in which the absorption process. Was correlated with the ionization potentials and the parameter μ of all studied polycyclic aromatic compounds. The correlation between the electron affinity and the parameter μ indicates the possibility of estimating the electron affinity without resorting to the complicated experiment and quantum chemical calculations. The equations of the linear regressions obtained theoretical values of the ionization potentials and electron affinity.
Pages: 20-24
References
- Roothaan C.C.J., Bagus P.S. Atomic Self-Consistent Field Calculation by the Expansion Method // Method in computational physics. New-York: Academic Press. 1963. V. 2. P. 47−94.
- Eljashevich M.A. Atomnaja i molekuljarnaja spektroskopija. Izd. 2-e. M.: EHditorial URSS. 2001. 896 s. ISBN 5-8360-0177-4.
- SHmidt V. Opticheskaja spektroskopija dlja khimikov i biologov. M.: Tekhnosfera. 2007. 374 c. ISBN 978-5-94836-140-6.
- Dolomatov M., Kovaleva E. Statistical Analysis of Ionization Energy Correlations and of Integral Quantum Characteristics in the Series of Anthraquinone Derivatives // Applied Physics Research. V. 5. № 2. 2013. P. 42−46.
- Dolomatov M.JU., Kovaleva EH.A. O svjazi ehnergii ionizacii i integralnykh kvantovykh kharakteristik ehlektronnykh spektrov pogloshhenija v rjadakh acetoksiantrakhinonov // Bashkirskijj khimicheskijj zhurnal. 2012. T. 19. № 4. S. 200−204.
- JAglom A.M. Korreljacionnaja teorija stacionarnykh sluchajjnykh funkcijj s primerami iz meteorologii. L.: Gidrometeoizdat. 1981. 281 s.
- Sosulin JU.G., Kostrov V.V., Parshin JU.N. Ocenochno-korreljacionnaja obrabotka signalov i kompensacija pomekh. M.: Radiotekhnika. 2014. 632 s. ISBN 978-5-88070-363-0.
- Perov A.I. Statisticheskaja teorija radiotekhnicheskikh sistem. M.: Radiotekhnika. 2003. 400 s. ISBN 5-93108-047-3.
- Klar EH. Policiklicheskie uglevodorody. M.: KHimija. T. 2. 1971. 456 s.
- Stepanov N.F. Kvantovaja mekhanika i kvantovaja khimija. M.: Mir. 2001. 519 s.
- R. Luchano Python. K vershinam masterstva. M.: DMK Press.2016. 768 s. ISBN: 978-5-97060-384-0, 978-1-491-94600-8.