350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2016 г.
Article in number:
A hardware-software complex for measuring the frequency and the spectrum of single or low-repetition rate pulses of THz-radiation
Authors:
M.Yu. Glyavin - Head of Laboratory, Institute of Applied Physics of RAS (N. Novgorod) E-mail: glyavin@appl.sci-nnov.ru M.B. Goikhman - Junior Research Scientist, Institute of Applied Physics of RAS (N. Novgorod) E-mail: goihman@appl.sci-nnov.ru A.V. Gromov - Junior Research Scientist, Institute of Applied Physics of RAS (N. Novgorod) E-mail: gromov@appl.sci-nnov.ru A.V. Palitsin - Ph. D. (Phys.-Math.), Research Scientist, Institute of Applied Physics of RAS (N. Novgorod) E-mail: pal@appl.sci-nnov.ru A.N. Panin - Leading Engineer, Institute for Physics of Microstructures of RAS (Nizhny Novgorod region) E-mail: panin@ipmras.ru Yu.V. Rodin - Leading Engineer, Institute of Applied Physics of RAS (N. Novgorod) E-mail: wish26@yandex.ru S.E. Filchenkov - Ph. D. (Phys.-Math.), Research Scientist, Institute of Applied Physics of RAS (N. Novgorod) E-mail: fil@appl.sci-nnov.ru
Abstract:
This paper describes a hardware-software complex for measuring the frequency and the spectrum of terahertz (THz) radiation. The complex is capable of processing low-repetition rate pulses with short spikes or quick hops of the carrier frequency. Results of simula-tions show that the complex can measure the carrier frequency and the spectrum of such pulses even if the amplitudes of the spikes amount to 10 GHz and the durations of the spikes are of the order of a few nanoseconds. It is important to point out that at present there is no standard instrumentation for measuring the spectrum of such pulses especially in the cases where the spike of the frequency exceeds GHz and the spike duration is only a few nanoseconds. The complex consists of hardware and software parts. The hardware part of the complex is composed of channels that measure the amplitude of the initial pulse as well as the amplitudes of the pulses transmitted via waveguide high-pass filters (HPFs) with different cutoff frequencies. The software part is based on an amplitude-frequency algorithm which uses the measured amplitudes to restore the frequency and the spectrum of the THz radiation. Special waveguide HPFs with cutoff frequencies exceeding the known analogs were developed and their characteristics were used to simulate the complex. In our opinion, the existing manufacture techniques allow developing waveguide HPFs with cutoff frequencies of up to 1.1 THz. The use of other filter designs, e.g., quasioptical filters, will make it possible to use the complex for measuring the spectrum at higher frequencies. The complex can be useful for measuring the spectrum of the output radiation in high-power pulse gyrotrons, as well as in the other terahertz sources, e.g., in quantum-cascade lasers, where fast frequency modulation in a wide range is possible, or in free electron lasers.
Pages: 4-12
References

 

  1. Idehara T., Mitsudo S., Saito S., Ogawa I., Okajima S. Accurate frequency measurement of a submillimeter wave gyrotron output using a far infrared laser as a reference // Rev. Sci. Instrum. 2003. V. 74. № 5. P. 2860−2862.
  2. Tretjakov M.JU., Kalynov JU.K. Izmerenie chastoty izluchenija impulsnogo submillimetrovogo girotrona po bienijam s garmonikami millimetrovogo sintezatora chastoty // PTEH. 2006. № 5. S. 74−81.
  3. Glyavin M.Yu., Luchinin A.G., Golubiatnikov G.Yu. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field // Phys. Rev. Letters. 2008. 100. 015101.
  4. Wade A., Fedorov G., Smirnov D., Kumar S., Williams B.S., Q. Hu, Reno J.L. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K // Nature Photonics. 2009. V. 3. S. 41−45.
  5. Lu Q.Y., Slivken S., Bandyopadhyay N., Bai Y., Razeghi M. Widely tunable room temperature semiconductor terahertz source // Applied Physics Letters. 2014. 105. 201102.
  6. Takahashi S., Ramian G., Sherwin M.S., Brunel L., J. van Tol. Submegahertz linewidth at 240 GHz from an injection-locked free-electron laser // Applied Physics Letters. 2007. 91. 174102.
  7. Glyavin M.Yu., Luchinin A.G., Bogdashov A.A. et.al. Experimental study of the pulsed terahertz gyrotron with record-breaking power and efficiency parameters // Radiophysics and Quantum Electronics. 2014. 56. 8−9. P. 497−507.
  8. Dean P., Valavanis A., Keeley J., Bertling K., Lim Y.L., Alhathlool R., Burnett A.D., L.H. Li, Khanna S.P., Indjin D., Taimre T., Rakić A.D., Linfield E.H., Davies A.G. Terahertz imaging using quantum cascade lasers - a review of systems and applications // J. Phys. D: Appl. Phys. 2014. 47. 374008.
  9. Glyavin M.Yu., Idehara T., Sabchevski S.P. Development of THz gyrotrons at IAP RAS and FIR UF and their applications in physical research and high-power THz technologies // IEEE transactions on terahertz science and technology. 2015. V. 5. № 5. P. 788−797.
  10. Anzin V.B., Lebedev S.P., Mukhin A.A., Porodnikov O.E. i dr. Teragercevyjj spektrometr s silnym impulsnym magnitnym polem // PTEH. 2008. № 6. S. 76−83.
  11. Ilyakov I.E., Kitaeva G.Kh., Shishkin B.V., Akhmedzhanov R.A. Terahertz wave electro-optic measurements with optical spectral filtering // Applied Physics Letters. 2015. 106. 121101.
  12. Glyavin M.Yu., Zapevalov V.E. Reflections influence on the gyrotron oscillation regimes // Int. Journal of Infrared and Millimeter Waves. 1998. V. 19. № 11. P. 1499−1511.
  13. Ikonnikov A.V., Antonov A.V., Lastovkin A.A., Gavrilenko V.I., Sadofev JU.G., Samal N. Issledovanie spektrov izluchenija impulsnykh kvantovykh kaskadnykh lazerov teragercevogo diapazona s vysokim spektralnym razresheniem // FTP. 2010. T. 44. № 11. S. 1514−1518.
  14. http://www.keysight.com/en/pcx-x205200/x-series-signal-analyzers.
  15. Arzhannikov A.V., Burdakov A.V., Vjacheslavov L.N., Ivanov A.I. i dr. Diagnosticheskijj kompleks dlja issledovanija generacii subteragercevogo izluchenija pri puchkovo-plazmennom vzaimodejjstvii na ustanovke GOL‑3 // Fizika plazmy. 2012. T. 38. № 6. S. 496−505.
  16. Glyavin M.Yu., Goykhman M.B., Gromov A.V., Palitsin A.V., Panin A.N., Rodin Yu.V., Fil-chenkov S.E. A waveguide high-pass filter system for measuring the spectrum of pulsed terahertz sources // Infrared Physics and Technology. 2016. V. 76. P. 11−20.
  17. Hempel M., Roben B., Schrottke L., Hubers H.-W., and Grahn H.T. Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination // Applied Physics Letters. 2016. 108. 191106.
  18. Chen G., Martini R., Park S.-W., Bethea C.G., Chen I.-C.A., Grant P.D., Dudek R., and Liu H.C. Optically induced fast wavelength modulation in a quantum cascade laser // Appl. Phys. Lett. 2010. 97. 011102.
  19. Gojjkhman M.B., Gromov A.V., Marev S.P., Palicin A.V., Rodin JU.V., Filchenkov S.E. Metod izmerenija spektra mikrovolnovykh impulsov, osnovannyjj na obrabotke ogibajushhikh signalov, proshedshikh cherez polosno-propuskajushhie filtry // EHlektromagnitnye volny i ehlektronnye sistemy. 2013. № 11. S. 51−57.
  20. Gojjkhman M.B., Gromov A.V., Marev S.P., Palicin A.V., Rodin JU.V., Filchenkov S.E. Modelirovanie izmerenija spektrov mikrovolnovykh impulsov s pomoshhju filtrov verkhnikh chastot // EHlektromagnitnye volny i ehlektronnye sistemy. 2014. T. 19. № 11. S. 10−16.
  21. http://vadiodes.com/index.php/en/products/detectors.
  22. http://www.vivatechmmw.com/products/components/filters/hpf.html.