350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2016 г.
Article in number:
Nanodeteсtor based on a new graphene 1D composite
Authors:
O.E. Glukhova - Dr.Sc. (Phys.-Math.), Associated Professor, Head of the Department of Radio-Technique and Electrodynamics, Physical Faculty, Saratov State University named after N.G. Chernyshevsky. E-mail: graphene@yandex.ru V.V. Mitrofanov - Post-graduate Student, the Department of Radio-Technique and Electrodynamics, Physical Faculty, Saratov State University named after N.G. Chernyshevsky. E-mail: ip.boyar@gmail.com
Abstract:
The optical conductivity of a new material - graphene 1D-composite are investigated for the development of a new type of optical nanoantenna element base. Studies were hold by the quantum model of nanodetector. The object of research was the composite structure formed by two types of graphene nanoribbons of armchair type A-7 (seven atoms are arranged on a line perpendicular to the line of extended edge) and single-walled carbon nanotube zigzag (10,0), which is covalently bonded with both ribbons. The study has found that the 1D-composite comprising the thin tube (10,0) with a diameter of 0,8 nm provides a high conductivity in the IR and UV ranges, as well as at the frequency of visible light red boundary of 1,6 eV (387 THz).
Pages: 55-59
References

 

  1. Krasnok A.E., Maksimov I.S., Denisjuk A.I., Belov P.A., Miroshnichenko A.E., Simovskijj K.R., Kivshar JU.S. Opticheskie nanoantenny // UFN. 2013. T. 183. S. 561-589.
  2. Yue L., Pircheraghi G., Monemian S.A., Manas-Zloczower I. Epoxy composites with carbon nanotubes and graphene nanoplatelets - Dispersion and synergy effects // Carbon. 2014.V. 78. P. 268-278.
  3. Kim S.H., Song W., Jung M.W., Kang Min.A., Kim K., Chang S.J., Lee S.S., Lim J., Hwang J., Myung S., An K.S. Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors // Advanced Materials. 2014. V. 26. № 25. P. 4247-4252.
  4. Kholmanov I.N., Magnuson C.W., Piner R., Kim J.Y., Aliev A.E., Tan C., Kim T.Y., Zakhidov A.A., Sberveglieri G., Baughman R.H., Ruoff R.S. Optical, Electrical, and electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films // Advanced Materials. 2015. V. 27. №19. P. 3053-3059.
  5. Lv R., Cruz-Silva E., Terrones M. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene Nanotube Hybrids and More //ACS Nano. 2014. V. 8, № 5. P. 4061-4069.
  6. Wimalasiri Y., Zou L. Carbon nanotube/graphene composite for enhanced capacitive deionization performance // Carbon. 2013. V. 59. P. 464-471.
  7. Slepchenkov M.M., Kolesnikova A.S., Savostyanov G.V., Nefedov I.S., Anoshkin I.V., Nasibulin A.G., Glukhova O.E. Giga- and terahertz-range nanoemitter based on peapod structure // Nano Research. 2015. V. 8. № 8. P. 2595-2602.
  8. Glukhova O.E., Savostyanov G.V., Slepchenkov M.M. A new approach to dynamical determination of the active zone in the framework of the hybrid model (quantum mechanics/ molecular mechanics) // Procedia Materials Science. 2014. V. 6. P. 256-264
  9. Marder M.P. Condensed Matter Physics. Wiley. 2011. 984 p.
  10. Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties // Physical Review B. 1998. V. 58. №11. P. 7260-7268.
  11. Pedersen T.G., Pedersen K., Kriestensen T.B. Optical matrix elements in tight-binding calculations // Physical Review B. 2001. V. 63. № 201101(R). P. 201101-1-201101-4.
  12. Zhang C., Chen L., Ma Z.Orientation dependence of the optical spectra in graphene at high frequencies // Physical Review B. 2008. V. 77. № 241402(R). P. 241402-1-241402-4.