350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2016 г.
Article in number:
Investigation of nanostructured materials by the spectrometer of very cold neutrons
Authors:
E.B. Ipatov - Ph.D. (Phys.-Math.), Associate Professor, Department of General Physics, Moscow Institute of Physics and Technology (State University). E-mail: ipatoveb@mail.ru S.P. Kuznetsov - Ph.D. (Phys.-Math.), Leading Research Scientist, Lebedev Physical Institute of the Russian Academy of Sciences (Moscow). E-mail: ckuz@sci.lebedev.ru A.V. Meskov - Ph.D. (Phys.-Math.), Senior Research Scientist, Lebedev Physical Institute of the Russian Academy of Sciences (Moscow). E-mail: ckuz@sci.lebedev.ru A.V. Shelagin - Dr.Sc. (Phys.-Math.), Associate Professor, Department of General Physics, Moscow Institute of Physics and Technology (State University). E-mail: Anatoly.Shelagin@gmail.com D.E. Ipatov - Assistant, Department of General Physics, Moscow Institute of Physics and Technology (State University). E-mail:: ipatoveb@mail.ru
Abstract:
The article describes a method for investigation of nanostructured materials based on the study of the scattering of very cold neutrons. The elements of structure in these materials (nanostructures) have characteristic dimensions from one nanometer to a hundred nanometers. Very cold neutrons (VCN) - is neutrons with energies eV. In this energy range, the elastic scattering of such neutrons by nanostructures does not change the state of the investigated object (scatterer). The article is organizing as follows: introduction, three sections, conclusion and literature. The first section provides a brief description of the scattering method VCN and time of flight spectrometer VCN. This spectrometer is designing to measure the dependencies total cross section VCN elastic interaction with the sample material from the neutron speed, incident from the vacuum. During measurement the attenuation method was used. The technique, developed by the authors, allows to obtain in experiments on the passage of VCN macroscopic elastic scattering cross section. For randomly inhomogeneous media, these sections are defined by correlation functions of the medium or the distribution in size and shape of the scatterers. The article discusses models that describe the structure of lenses  discrete and continuous diffusers, fractal environments, superstructures. In the second section are calculated macroscopic cross sections for elastic incoherent scattering VCN these environments. The results of the application of VCN scattering method are given in the third section. Here analyzes the following models randomly inhomogeneous media, in which randomly positioned discrete heterogeneity (spheres, disks, cylinders) with a concentration of less than 10% are non-structured or heterogeneity described by correlation functions. Details are researched also fractally similar systems. The particles  scatterers in such systems are organized into clusters. These clusters have an internal structure that can be described in the language fractals. The fundamental parameter in the description of the geometric arrangement of the particles in the clusters is the fractal dimension. Determination of the fractal dimension of the clusters, and other parameters can be carried out in experiments on the scattering of VCN. The paper presents the typical TEM - images of structures on which VCN scattering can be described by the correlation functions of fractal type. The paper presents the typical TEM - images of structures on which VCN scattering can be described by the correlation functions of fractal type. Finally, in conclusion, the authors have tried to assess the state of the scattering method VCN and its development prospects.
Pages: 40-54
References

 

  1. Marikhin V.A., Mjasnikova L.P. Nadmolekuljarnaja struktura polimerov. M.: KHimija. 1977.
  2. Vedenov A.A., Levchenko E.B. Nadmolekuljarnye zhidkokristallicheskie struktury v rastvorakh amfifilnykh molekul // UFN. 1983. T. 141. C. 3.
  3. Gallo B. ZHidkokristallicheskaja struktura blok-sopolimerov // ZHidkokristallicheskijj porjadok v polimerakh. M.: Mir. 1981.
  4. Braun G., Uolken Dzh. ZHidkie kristally i biologicheskie struktury. M.: Mir. 1982.
  5. Rambidi N.G., Zamalin V.M. Molekuljarnaja ehlektronika: istoki i nadezhdy. M.: Znanie. 1985.
  6. Antonov A.V., Isakov A.I., Kuznecov S.P., Meshkov I.V., Perekrestenko, A.D. SHelagin A.V. Issledovanie neodnorodnostejj v vanadii i berillii metodom ochen kholodnykh nejjtronov // Fizika tverdogo tela. 1984. T. 26. № 6.
  7. Gurevich I.I. Tarasov L.V. Fizika nejjtronov nizkikh ehnergijj. M.: Nauka. 1965.
  8. Sears V.E. Fundamental aspects of neutron optics // Physics Reports (Review section of Physics letters). 1982. V. 82. № 1. P. 1-29.
  9. Ignatovich V.K. Nejjtronnaja optika. M.: Fizmatlit. 2006.
  10. Landau L.D., Lifshic E.M. Kvantovaja mekhanika. M.: Nauka. 1974.
  11. Ipatov E.B., Kuznecov S.P., Meshkov I.V., SHelagin A.V. Polnoe i differencialnoe sechenija rassejanija ochen kholodnykh nejjtronov na beskonechno dlinnom krugovom cilindre // EHlektromagnitnye volny i ehlektronnye sistemy. 2013. T. 18. № 12. S. 51.
  12. Antonov A.V., Isakov A.I., Meshkov I.V., Perekrestenko A.D., SHelagin A.V. Rassejanie ochen kholodnykh nejjtronov na neodnorodnostjakh razlichnykh form // Kratkie soobshhenija po fizike FIAN. 1985. № 10. S. 48.
  13. Steyerl A. Very cold neutrons - a new tool in condensed matter research // II Mezhdunarodnaja shkola po nejjtronnojj fizike (Alushta, 1974). 1974. D3-7991. S. 42.
  14. Tatarskijj V.I. Rasprostranenie voln v turbulentnojj atmosfere. M.: Nauka. 1967.
  15. Rytov S.M. Vvedenie v statisticheskuju radiofiziku T1. Sluchajjnye polja. M.: Nauka. 1976.
  16. Maleev S.V. Small - angle multiple neutrons scattering in fractal media // Phys.Rev. B. 1995. № 52. P. 13163.
  17. Grinev V.T., Kuznecov S.P., Meshkov I.V., Ortov V.A., Perskrestenko A.D., Raspopov L.N., SHelagin A.V. Issledovanie nadmolekuljarnojj struktury i dinamiki chastichno kristallizirujushhikhsja polimerov metodom rassejanija ochen kholodnykh nejjtronov // Vysokomolekuljarnye soedinenija. 1993. T. 35. Vyp. 2. S. 179-185.
  18. Kuznecov S.P., Meshkov I.V., Perskrestenko A.D., SHelagin A.V. Issledovanie struktury blok-sopolimera polistirolov - polibutadien-polistirol metodom difrakcii ochen kholodnykh nejjtronov // Vysokomolekuljarnye soedinenija. 1993. T. 35A. Vyp. 2. S. 195-198.
  19. Kuznecov S.P., Meshkov I.V., Perskrestenko A.D., SHelagin A.V. Difrakcija ochen kholodnykh nejjtronov na periodicheskikh i kvaziperiodicheskikh strukturakh // KSR. 1996. № 9. S. 17.
  20. Grinev V.G., Isakov A.I., Kovaleva N.JU., Krasheninnikov V.G., Kuznecov S.P., Novokshenova L.A., Perekrestenko A.D., SHelagin A.V., SHelagin D.A. Issledovanie granicy razdela kremnijj-poli(dejjtero)-ehtilen metodom polnogo vnutrennego otrazhenija ochen kholodnykh nejjtronov // Vysokomolekuljarnye soedinenija. 1998. T. 40. № 11. S. 1763-1768.
  21. Grinev V.G., Isakov A.I., Kudinova O.N., Kuznecov S.P., Meshkov I.V., Novokshenova L.A., Perekrestenko A.D., Tarasova T.M., SHelagin A.V., SHelagin D.A. Issledovanie nadmolekuljarnojj struktury kompozicionnogo materiala aljuminijj - poliehti­len, poluchennogo metodom polimerizirovannogo napylenija // KSF FIAN. 1996. № 1-2. S. 48.
  22. Antonov A.V., Berjuleva N.S., Isakov A.I., Kuznecov S.P., Meshkov I.V., Perekrestenko A.D., SHelagin A.V. Metod opre­delenija raspredelenija razmerov neodnorodnostejj v tverdom tele s pomoshhju ochen kholodnykh nejjtronov // KSF. 1986. № 4. S. 15.
  23. Stepanov A.V., SHelagin A.V. Depoljarizacija nejjtronov ochen nizkikh ehnergijj v ferromagnetike// KSF FIAN. 1977. № 9. S. 37.
  24. Kuznecov S.P., Meshkov I.V., Perekrestenko A.D., SHelagin A.V. Issledovanie submikroskopicheskikh magnitnykh neodno­rodnostejj ferromagnetikov s pomoshhju ochen kholodnykh nejjtronov // KSF FIAN. 1989. № 8. S. 3.
  25. Kuznecov S.P., Meshkov I.V., Perekrestenko A.D., SHelagin A.V. Issledovanie submikroskopicheskikh magnitnykh neodno­rodnostejj ferromagnetikov s pomoshhju ochen kholodnykh nejjtronov // Pisma v ZHTF. 1989. T. 15. Vyp. 20. S. 27.
  26. Ibraev B.M., Ilina E.G., Kaljuzhnaja G.A., Kazakov A.K., Kuznecov S.P., Meshkov I.V., Perekrestenko A.D. Lokalnye mikroneodnorodnosti v promyshlennykh kristallakh kremnija // KSF. 1989. № 11. S. 6.
  27. Kuznetsov S.P., Dubnikova I.L., Litvin V.S., Meshov I.V., Selagin A.V., Udovenco A.I. Determination of polyolefine based composites nanostructure parameters by vere4 cold neutrons scattering //Acta Physica Polonica A. 2010. V. 117. № 5. P. 727-732.
  28. Kovaleva N.JU., Brevnov P.N., Grinev V.G., Kuznecov S.P., Pozdnjakova I.V., CHvalun S.N., Sinevich E.A., Novokshonova L.A. Sintez nanokompozitov na osnove polipropilena i sloistykh MMT metodom interkaljacionnojj polimerizacii // Vysoko­molekuljarnye soedinenija. Ser. A. 2004. T. 46. № 6. S. 1-7.
  29. Dubnikova I., Kuvardina E., Krasheninnikov V., Lomakin S., Tchmutin I., Kuznetsov S. The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical and electrical properties of melt mixed polypropylene - based composites //Journal of Applied Polymer Science. 2010. V. 117. S. 259.