350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2016 г.
Article in number:
Microwave absorbing structure based on microwires
Authors:
V.I. Ponomarenko - Dr.Sc. (Phys.-Math.), Professor, Department of Experimental Physics, V.I. Vernadsky Crimean Federal University (Simferopol), Institute of Physics and Technology. Е-mail: vponom@gmail.com V.V. Popov - Ph.D. (Phys.-Math.), Associate Professor, Department of Experimental Physics, V.I. Vernadsky Crimean Federal University (Simferopol), Institute of Physics and Technology. E-mail: slavapop@gmail.com I.M. Lagunov - Senior Lecturer, Department of Experimental Physics, V.I. Vernadsky Crimean Federal University (Simferopol), Institute of Physics and Technology. E-mail: lagunov.igor@gmail.com
Abstract:
We consider here a periodic microwave absorbing structure based on microwires, embedded in the dielectric layer, which mounts seamlessly on a flat metal plate. For the low period of the cell the frequency dependence of the reflection coefficient from the considered structure proves to be close to that for a structure in a form of the resistive film embedded in or over the dielectric layer. The matching conditions of the structure with free space are obtained. The bandwidth of the radio wave absorber can be tuned for a given maximum reflection by varying the parameters of the structure. The results of the paper can be further used for investigation of broadband microwave absorbing structures including set of conducting grids with squared cells.
Pages: 74-79
References

 

  1. Munk B.A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons. 2000.
  2. Ponomarenko V.I. Iskusstvennyjj magnetik s neuporjadochennojj strukturojj // Radiotekhnika i ehlektronika. 2000. № 6. S. 744-745.
  3. Chung B.-K., Chuah H.-T. Modeling of RF absorber for application in the design of anechoic chamber // PIER. 2003. V. 43. P. 273-285.
  4. Qin F., Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles // J. of Appl. Phys. 2012. V. 111. № 6. P. 061301.
  5. Popov V.V. Gigantskijj magnitnyjj impedans v amorfnykh mikroprovodakh v diapazone sverkhvysokikh chastot: Avtoref. dis. - kand. fiz.-mat. nauk. Simferopol. 2014. 152 s.
  6. Marín P., Cortina D., Hernando A. Electromagnetic Wave Absorbing Material Based on Magnetic Microwires // IEEE Transactions on Magnetics. 2008. V. 44. Is. 11. P. 3934-3937.
  7. SHestopalov V.P., Litvienko L.N., Masalov S.A., Sologub V.G. Difrakcija voln na reshetkakh. KHarkov: Izd-vo KHark. un-ta. 1997.
  8. Nikolskijj V.V., Nikolskaja T.I. EHlektrodinamika i rasprostranenie radiovoln.M.: Nauka. Gl. red. fiz.-mat. lit. 1989. 544 s.
  9. Berzhanskijj V.N., Ponomarenko V.I., Popov V.V., Torkunov A.V. Izmerenie impedansa mikroprovodov v prjamougolnom volnovode // Pisma v ZHTF. 2005. T. 31. № 22. C. 24-28.
  10. Ponomarenko V.I., Popov V.V., Vinogorodskijj D.F., Berzhanskijj V.N. EHksperimentalnoe opredelenie vklada vysshikh mod pri izmerenii impedansa mikroprovodov volnovodnym metodom // Pisma v ZHTF. 2006. T. 32. № 20. C. 7-11.
  11. Ponomarenko V.I., Kuprijanov I.K., ZHuravlev S.I. Neotrazhajushhaja struktura na osnove rezistivnojj plenki s malojj emkostnojj komponentojj provodimosti. // Radiotekhnika i ehlektronika. 1992. T. 37. № 5. S. 812-818.
  12. Meleshko A.I., Polovnikov S.P. Uglerod, uglerodnye volokna, uglerodnye kompozity. M.: SAJJNS-PRESS. 2007. 192 s.