350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2016 г.
Article in number:
Parametric synthesis algorithms for matching to the stationary generation mode criterion integral four-terminal devices within self-excited oscillator feedback circuit
Keywords:
parametrical synthesis
oscillators
optimum frequency characteristics of jet and resistive two-poles
optimum interrelations between elements of a matrix of transfer of two-port networks
the characteristic equations
Authors:
A.A. Golovkov - Dr.Sc. (Eng.), Professor, Military Educational and Scientific Center
of the Air Force «N. E. Zhukovsky and Y. A. Gagarin Air Force Academy» (Voronezh)
V.A. Golovkov - Engineer, Voronezh Construction Bureau of Antenna Design. E-mail: vladimir.golovkov@yandex.ru
Abstract:
Based on immitanse stability criterion, there were generally for the first time specified optimal relations between the elements within traditional transmission matrix of matching to the criterion of stationary generation mode integral four-terminal devices to be brought into the external feedback circuit. The resultant relations having the meaning of characteristic equations have been employed to determine frequency behavior of integral two-terminal devices of typical four-terminal device circuit and that of in-space initial data physical realizability domains for various types of feedback circuit (voltage-parallel, current-serial, voltage-serial and current-parallel). In the particular case (without regard to load characteristics and non-linear element), these relations transform into zero-equality for one of the elements of traditional transmission matrix of matching four-terminal device with=0. For example, when utilizing Pi-section reactive four-terminal device within voltage-parallel feedback circuit this result reduces to the known condition to provide stationary generation mode of three-point self-excited oscillators ( Hartley and Colpitts oscillators) in the form of zero-equality of cumulative resistances of all two-terminal devices within this four-terminal one. It was demonstrated that physical realizability domain boundaries of stationary generation mode in the Smith chart represent hodograth curves similar to those obtained by him for the devices to match to the minimum return signal provision criterion. Results of the work can be used for synthesis of internal feedback self-excited oscillators.
Pages: 20-29
References
- Spravochnik po radioehlektronike / pod obshh. red. A.A. Kulikovskogo. M.: EHnergija. 1968. T. 2. 536 s.
- Golovkov A.A., Ishutin D.A. Matematicheskoe i skhemotekhnicheskoe modelirovanie generatorov i chastotnykh moduljatorov s proizvolnojj cepju prjamojj peredachi i parallelnojj po toku obratnojj svjazju // Teorija i tekhnika radiosvjazi. 2012. № 4. S. 62-69.
- Golovkov A.A., Dimitrenko V.N. Matematicheskoe i skhemotekhnicheskoe modelirovanie generatorov i chastotnykh moduljatorov s variantami vkljuchenija trekhpoljusnogo nelinejjnogo ehlementa pered soglasujushhim reaktivnym chetyrekhpoljusnikom i posle nego. Posledovatelnoe soedinenie nelinejjnogo ehlementa i cepi obratnojj svjazi // Informacionno-izmeritelnye i upravljajushhie sistemy. 2012. T. 10. № 3. S. 81-88.
- Golovkov A.A., Ferenec P.S. Matematicheskoe i skhemotekhnicheskoe modelirovanie generatorov mnogochastotnykh signalov i chastotnykh moduljatorov s vnutrennejj obratnojj svjazju pri vkljuchenii aktivnogo dvukhpoljusnogo nelinejjnogo ehlementa pered rezistivnym chetyrjokhpoljusnikom // Naukojomkie tekhnologii.2012. T. 13. № 4. S. 12-16.
- Golovkov A.A., Ragozin A.V. Matematicheskoe i skhemotekhnicheskoe modelirovanie generatorov i chastotnykh moduljatorov s variantami vkljuchenija parallelnogo soedinenija trjokhpoljusnogo nelinejjnogo ehlementa i cepi obratnojj svjazi pered rezistivnym chetyrjokhpoljusnikom i posle nego // Nelinejjnyjj mir. 2012. T. 10. №9. S. 623-628.
- Kulikovskijj A.A. Ustojjchivost aktivnykh linearizovannykh cepejj s usilitelnymi priborami novogo tipa. M-L.: GEHIju 1962. 192 s.
- Smit F. Krugovye diagrammy v radioehlektronike / per. s angl. M.N. Bergera, B. JU. Kapilevicha. M.: Svjaz. 1976. 142 s.