350 rub
Journal Electromagnetic Waves and Electronic Systems №10 for 2016 г.
Article in number:
Three-millimeter wavelength range magnetrons with the possibility of tuning and stabilization of frequency
Authors:
I.M. Ivanov - Leading Engineer, JSC «Pluton», Moscow E-mail: vela-kim@mail.ru N.I. Scripkin - Head of Laboratory, JSC «Pluton», Moscow E-mail: n.skripkin@pluton.msk.ru A.V. Shmelev - Leading Engineer, JSC «Pluton», Moscow E-mail: av.shmelev88@gmail.com
Abstract:
In moving to an increasingly shorter wavelengths is not possible to realize high power magnetron in classical π-mode embodiment and coaxial version. However, the need for highly stable sources (better than 10-5) with frequency tuning obliges us to search for technical solutions for the realization of such devices. The possibility of tuning and stabilization of the magnetron oscillators can significantly improve the performance of radar systems for various applications. This article describes how to adjust and stabilize frequency of pulsed magnetrons developed by JSC \"Pluton\". Initial data for pulse magnetron of 3 mm range: The oscillation frequency (GHz) f0; Pulse width, adjustable (ns) 50-300; Parcels frequency, adjustable (Hz) 1000-5000; Pulse power, maximum (kW) 12; Versions  with one or two outputs. Experimental research on the mechanical frequency tuning in the manual mode and the restructuring of «packs» are presented . Electronic tuning magnetron via electronically controlled phase shifters are shown. Maximum band tuning in the experiment was 100 MHz with frequency stability of better than 10-5. Spectrometric data are presented. In the method of equivalent circuits, equations for determining the tuning range for magnetrons with one and two outputs are presented. The preferred usage of magnetrons with two outputs to increase the tuning range are defined. Applied reactive elements allow one to optimize the geometric dimensions of tuning schemes and to stabilize frequencies up to integration with the magnetron generator housing. The possibility of using in the «pulse-to-pulse» and «intra-pulse» tuning as well as the ability to create a LFM magnetron are noted. These devices can be used for stealth modes and to improve the distance resolution for different purposes.
Pages: 68-72
References

 

  1. Skripkin N.I., Gurko A.A., Marin V.P. Vozmozhnost sozdanija v dvukhmillimetrovom diapazone dlin voln impulsnogo koaksialnogo magnetrona // Naukoemkie tekhnologii. 2006. T. 7. № 7-8. S. 107-109.
  2. Skripkin N.I., Gurko A.A. O vozmozhnosti sozdanija koaksialnogo magnetrona na vysshikh prostranstvennykh garmonikakh v dvukhmillimetrovom diapazone dlin voln // Sb. nauch. trudov NAN Ukrainy «Radiofizika i ehlektronika». KHarkov: Institut radiofiziki i ehlektroniki im. A.JA. Usikova. 2007. T. 12. № 2. S. 226-228.
  3. Osipov V.A., SHostak S.A. Analiz raboty samosinkhronizirovannogo magnetrona // Doklady BGUIR. 2013. № 1(71). S. 84-90.
  4. Dejjvid EH. Fazirovanie vysokochastotnymi signalami // Sb. «EHlektronnye sverkhvysokochastotnye pribory so skreshhennymi poljami» / Per. pod red. M.M. Fedorova. M.: IL. 1961. 327 s.