350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2016 г.
Article in number:
Multifunctional method of spase telescope precision units production
Authors:
A.O. Shtokal - Ph. D. (Eng.), Design Engineer 1к, Kaluga branch of Lavochkin Research and Production Association. E-mail: cuauthemoc1@yandex.ru E.V. Rykov - Head of Department, Main Designer, Kaluga branch of Lavochkin Research and Production Association. E-mail: rik@laspace.ru K.B. Dobrosovestnov - Head of Department, Kaluga branch of Lavochkin Research and Production Association. E-mail: dkb@laspace.ru T.A. Govorun - Post-graduate Student, Kaluga branch of the Bauman MSTU, Design Engineer, Kaluga branch of Lavochkin Research and Production Association. E-mail: Glancet@yandex.ru O.P. Bazhenova - Head of Sector, Lavochkin Research and Production Association (Khimki, Moscow region). E-mail: bazhenova_laspace@mail.ru T.V. Rozhkova - Head of Laboratory, Lavochkin Research and Production Association (Khimki, Moscow region). E-mail: rojkova_t@list.ru
Abstract:
The space telescope construction used for working in determined spectre of electromagnetic emission will provide astronomers with knowledge-intensive means of the Universe studying and permit greatly increasing our knowledge about environment. Therefore, outer space work condition and requirements to the quality information obtained by telescope impose huge amount of interrelated requirements to physical characteristics of materials used in production of space telescopes precision units. Microarc oxidation is an advanced method of composite materials generation with wide rate of obtaining physical properties and comparing simplicity tech-nological process guiding in composite material generation with a priori physical characteristics. A range of scientific and technical problems in the sphere of the condensed-matter physics is elaborated in this article, in result, the following results are obtained. 1. The interrelation between the thickness of MAO-covering, its exterior layer and pore bridging process for optimal technology gen-eration for space telescope warmer isolation layer is determined. 2. The dependence of a thickness of zirconium alloy 702 MAO-covering on thermal conductivity coefficient; the dependence of a ratio of a covering area to total area of composite material in measuring cross-sections on the linear thermal expansion coefficient of composite material - aluminium alloy АМг6 - MAO-covering?; the dependence of covering area part in item section total area on a ratio of item rigidity of aluminium alloy АМг6 with MAO-covering to item rigidity without covering; the dependence of covering area part in item section total area on a ratio maximal mechanical stresses in an item of aluminium alloy АМг6 with MAO-covering to maximal mechanical stresses in an item without covering are established. 3. The optimal technological modes of composite materials generation based on aluminium alloy АМг6 and zirconium alloy 702 allowing minimization of outgassing in outer space and increasing the space telescope optical system work quality are identified. 4. Referring to explorations of different size MAO-coatings behaviour in the condition of repetitive temperature changes it is recom-mended for items of aluminium alloy АМг6 with such coatings of thickness more than 50 µm intended to work in condition with tem-perature changes more than 200°C to avoid stresses concentrators (tops and edges). 5. Microarc oxidation is a progressive method of generation of wear-resistant, corrosion-resistant, thermal protecting and dielectric coatings, whereas one should remember that depending from conditions of exploitation, type of structure and preferable type of de-formation the choice of MAO-coating thickness can occur in considerable influence on the load capacity of a structure.
Pages: 27-41
References

 

  1. Akishin A.I. Ionnaja bombardirovka v vakuume. M.: Atomizdat. 1965. 265 s.
  2. Korzhavyjj A.P. Vlijanie ionno-ehlektronnojj bombardirovki na svojjstva kompozicijj metall-diehlektrik i razrabotka na ikh osnove dolgovechnykh katodov dlja otpajannykh priborov. Dis. - dokt. tekhn. nauk. M.: 1991. 47 s.
  3. Nikiforov D.K., Korzhavyjj A.P., Nikiforov K.G. EHmitirujushhie nanostruktury «metall ? oksid metalla»: fizika i primenenie. / Pod red. A.P. Korzhavogo. M.: Izd-vo MGTU im. N.EH. Baumana. 2009. 156 s.
  4. Raspylenie tverdykh tel ionnojj bombardirovkojj / Pod red. R. Berisha. M.: Mir. 1986. 488 s.
  5. Lazarev V.B., Sobolev V.V., SHaplygin I.S. KHimicheskie i fizicheskie svojjstva prostykh okislov metallov. M.: Nauka. 1983. 239 s.
  6. Pogrebnjak A.D., Tjurin JU.N. Struktura i svojjstva pokrytija iz Al2O3 i Al, osazhdennykh mikrodugovym oksidirovaniem na podlozhku iz grafita // ZHTF. 2004. № 8. S. 109−112.
  7. Korzhavyjj A.P., Fajjfer S.I., Pisachev N.E. Vnedrenie ionov v metally, pokrytye tonkimi plenkami okislov v tlejushhem razrjade // Tezisy dokladov chetvertojj Vsesojuznojj konf. po metodam issledovanija i opredelenija gazov v metallakh i neorganicheskikh materialakh. L.: 1978. S. 63.
  8. Korzhavyjj A.P. Metally s vysokojj ustojjchivostju k raspyleniju na osnove legkikh metallov dlja kholodnykh istochnikov ehlektronov // Naukoemkie tekhnologii. 2001. № 4. S. 29−32.
  9. Kucherenko E.T. Poluchenie okisnykh plenok aljuminija peremennojj tolshhiny v plazme gazovogo razrjada // Materialy Mezhdunar. nauchno-tekhnich. konf. «Vakuumnye tekhnologii i oborudovanie». KHarkov. 2001. S. 279−282.
  10. Bondarenko G.G., Korzhavyjj A.P. Ionno-plazmennoe napylenie aljuminievykh i berillievykh pokrytijj na vnutrennie poverkhnosti polykh cilindricheskikh katodov // Metally. 1995. № 5. S. 167−171.
  11. Bondarenko G.G.i dr. Povedenie metallicheskikh kompozicijj na osnove medi i aljuminija v uslovijakh dlitelnojj ionno-ehlektronnojj bombardirovki // Perspektivnye materialy. 1999. № 3. S. 29−39.
  12. Moisheev A.A. Vvedenie v specialnost «Raketno-kosmicheskaja tekhnika». M.: Izd-vo MAI-PRINT. 2013. 120 s.
  13. SHustov B.M., Sachkov M.E. Nauchnye zadachi proekta «Spektr-UF» // Vestnik: nauchno-tekhnich. zhurnal FGUP «NPO im. S.A. Lavochkina». 2013. № 3. S. 8−15.
  14. Cajjt nauchno-proizvodstvennogo predprijatija OOO «Sibspark». URL: http://tte-tomsk.ru/mdo.php (data obrashhenija 19.04.2012).
  15. SHatrov A.S., Kokarev V.N. Innovacionnaja tekhnologija plazmennogo ehlektroliticheskogo oksidirovanija (PEHO) i sozdanie novogo konstrukcionnogo materiala - topokompozita // Armaturostroenie. 2010. № 2. S. 63−67.
  16. Ramazanova ZH.M., Budnickaja JU.JU. Korrozionnaja stojjkost MDO-pokrytijj na splavakh aljuminija // Korrozija: materialy, zashhita. 2004. № 8. S. 26−29.
  17. SHtokal A.O., Rykov E.V., Dobrosovestnov K.B. Povyshenie iznosostojjkosti, zhestkosti, tochnosti i ehlektrosoprotivlenija uzlov kosmicheskikh apparatov pri pomoshhi mikrodugovogo oksidirovanija // Trudy XXXVIII Akademicheskikh chtenijj po kosmonavtike «Aktualnye problemy rossijjskojj kosmonavtiki». M., 2014. S. 544−545.
  18. SHtokal A.O., SHatalov V.K. Mikrodugovoe oksidirovanie kak sposob sozdanija izoljacionnogo sloja nagrevatelja kosmicheskogo teleskopa // Materialy Vseros. nauchno-tekhnich. konf. «Naukoemkie tekhnologii v priboro- i mashinostroenii i razvitie innovacionnojj dejatelnosti v vuze». M.: 2013. T. 1. S. 67−69.
  19. SHtokal A.O., SHatalov V.K. Izuchenie vlijanija MDO-pokrytija na teploprovodnost cirkonija // Materialy regionalnojj nauchno-tekhnich. konf. «Naukoemkie tekhnologii v priboro- i mashinostroenii i razvitie innovacionnojj dejatelnosti v vuze». M.: 2014. T. 1. S. 4−7.
  20. SHatalov V.K.i dr. Mikrodugovoe oksidirovanie cirkonija kak sposob sozdanija ehlementov teplorazvjazki v kosmicheskikh apparatakh // Nauka i obrazovanie: EHlektronnoe nauchno-tekhnich. izdanie. 2014. № 8. S. 174−188. URL: http://technomag.bmstu.ru/doc/724519.html.
  21. SHatalov V.K.i dr. Vlijanie mikrodugovogo oksidirovanija na koehfficient linejjnogo teplovogo rasshirenija aljuminievogo splava AMg6 // Glavnyjj mekhanik. 2014. № 7. S. 47−52.
  22. Brown S.D., Kuna K.J., Tran Bao Van. Anodic Spark Deposition from Aqueous Solutions of NaAlO2 and Na2SiO3 // J. Amer. Ceram. Soc. 1971.V. 54. № 4. P. 384−390.
  23. Tran Bao Van, Brown S.D., Wirtz G.P. Mechanism of Anodic Spark Deposition // Amer. Ceram. Bull. 1977. V. 56. № 6. P. 563−568.
  24. Bakovec V.V., Poljakov O.V., Dolgovesova I.P. Plazmenno-ehlektroliticheskaja anodnaja obrabotka metallov. Novosibirsk: Nauka. Sib. otd-nie. 1990. 168 s.
  25. Fajjfer S.I., Koftelev V.T., Korzhavyjj A.P.i dr. Ob ehlektroprovodjashhikh kermetakh dlja podogrevatelejj katodov // EHlektronnaja tekhnika. Materialy. 1969. № 6. S. 3−10.
  26. Fajjfer S.I., Koftelev V.T., Korzhavyjj A.P. Vysokotemperaturnoe diffuznoe soedinenie molibdena i tantala s ehlektroprovodjashhimi kermetami na osnove okisi aljuminija / Diffuzionnoe soedinenie v vakuume metallov, splavov i nemetallov. M.: Izd-vo PNILDSV. 1970. S. 111−119.
  27. Nechiporenko E.P., Osipov A.D., Korzhavyjj A.P.i dr. Vlijanie uslovijj poluchenija silicidnykh sloev na molibdene na nekotorye ikh svojjstva // Temperaturoustojjchivye zashhitnye pokrytija. L.: Nauka. 1968. S. 68−74.
  28. SHatalov V.K.i dr. Izuchenie vlijanija pokrytija, vypolnennogo mikrodugovym oksidirovaniem, na zhestkost i prochnost protjazhennykh silovykh ehlementov kosmicheskogo apparata // Nauka i obrazovanie: EHlektronnoe nauchno-tekhnich. izdanie. 2014. № 7. S. 169−174. URL:http://technomag.bmstu.ru/doc/717592.html.