350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2015 г.
Article in number:
Adaptive applied TV system for obstacle detection on underlying surface for mobile robotic platform
Keywords:
computer vision
clustering
obstacle detection
monocular system
adaptive algorithm
applied TV
Authors:
I.M. Lebedev - Post-graduate Student, P.G. Demidov Yaroslavl State University. E-mail: ilyaleb@gmail.com
A.L. Tyukin - Post-graduate Student, P.G. Demidov Yaroslavl State University. E-mail: tyukin.alexx@gmail.com
A.L. Priorov - Dr.Sc. (Eng.), Associate Professor, P.G. Demidov Yaroslavl State University. E-mail: tyukin.alexx@gmail.com
A.V. Prozorov - Post-graduate Student, P.G. Demidov Yaroslavl State University. E-mail: alexprozoroff@gmail.com
Abstract:
The paper presents a monocular obstacles detecting of the applied TV system. The approach to solving the problem lies in detecting pixels that different in appearance than the ground. The algorithm works in real time in different condition providing a high resolution image at the output. The possibility of autotuning the system is shown.
Reference area is selected before mobile platform. It is split into multiple clusters. Then the image is analyzed with respect to all the clusters. If a pixel can be assigned to any cluster it will be considered as the underlying surface, or an obstacle.
The algorithm of color information accumulation about new clusters is described. This algorithm allows our system to learn which makes it possible to adapt to changes in illumination. Also it makes possible operation with both predetermined information without learning mode and mixed mode witch use all these two types of information.
Pages: 64-69
References
- BauerA., WiklundM. World Robotics. 2014. Industrial Robots. Rezhim dostupa: http://www.worldrobotics.org/
- Kuznecov O.P. Iskusstvennyjj intellekt i kognitivnye nauki // Informacionno-izmeritelnye i upravljajushhie sistemy. 2013. №5. S.16-24.
- Novokreshhenov A.A., KHranilov V.P. Programmno-apparatnye sredstva povyshenija ehffektivnosti ispolzovanija vychislitelnykh resursov v polnoperebornykh zadachakh avtomatizirovannogo razmeshhenija ehlementov // Informacionno-izmeritelnye i upravljajushhie sistemy.2013.№ 7. S. 77-80
- Babajan P.V., Alpatov B.A. Metody obrabotki i analiza izobrazhenijj v bortovykh sistemakh obnaruzhenija i soprovozhdenija obektov // Cifrovaja obrabotka signalov. 2006. № 2. S. 45-51.
- Fazl-Ersi E., Tsotsos J. Region classification for robust door detection in indoor environments // in Int. Conf. on Image Analysis and Recognition (ICIAR). 2009.
- Maier D., Stachniss C. and Bennewitz M. Vision-based Humanoid Navigation Using Self-Supervised Obstacle Detection // International Journal of Humanoid Robotics. 2013.
- Maier D., Bennewitz M. Appearance-Based Traversability Classification in Monocular Images Using Iterative Ground Plane Estimation, Proceedings of the IEEE // RSJ International Conference on Intelligent Robots and Systems (IROS). 2012.
- Chau Nguyen Viet, Marshall I.W. Vision-based obstacle avoidance for a small // Low-cost robot in Int. Conf. on Image Analysis and Recognition (ICIAR). 2007.
- Tjukin A.L., Lebedev I.M., Priorov A.L. Razrabotka i ocenka kachestva raboty algoritma cifrovojj obrabotki televizionnykh izobrazhenijj dlja zadach pozicionirovanija v zamknutom prostranstve // Nelinejjnyjj mir. 2014. T. 12. № 12. S. 26-30.
- Everett H.R. Sensors for Mobile Robots: Theory and Applications. Massachusetts. 1995.
- Khryashchev V., Shmaglit L., Shemyakov A. The Application of Machine Learning Techniques to Real Time Audience Analysis System // In: Favorskaya M., Jain L.C. (eds.) Computer Vision in Control Systems-2. Intelligent Systems Reference Library. V. 75. Springer International Publishing, Switzerland. 2015. R. 69-80
- Sonka M., Hlavac V., Boyle R. Image Processing, Analysis, and Machine Vision. Cengage Learning. 2014.
- Priorov A.L., KHrjashhev V.V., Golubev M.N. Udalenie impulsnogo shuma so sluchajjnymi znachenijami impulsov iz izobrazhenijj // Radiotekhnika. 2010. № 5. S.72-79.
- Tyukin, A., Lebedev I., Priorov A. The development and research of the indoor navigation system for a mobile robot with the possibility of obstacle detection // Open Innovations Association (FRUCT16). 2014 16th Conference.27-31 Oct. 2014. R.
- LebedevI.M., PriorovA.L., TjukinA.L. Analizalgoritmovnavigaciiibesprepjatstvennogoperedvizhenijaavtonomnykhmobilnykhrobotov v ogranichennom prostranstve // Dokl.16-jj mezhdunar. konf. «Cifrovaja obrabotka signalov i ee primenenie» (DSPA-2013). Moskva. 2014. T. 2. S.614-618.