350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2015 г.
Article in number:
Direction of arrival estimation algorithms
Authors:
Korobkov M.A. - Post-gradient Student, Ryazan State Engineering University, Research Engineer, PC Branch «JRSC» - «RI SIE» (Moscow). E-mail: Korobkov.M.A@yandex.ru Petrov A.S. - Dr.Sc. (Eng.), Professor, NIU VShE MIEM, Chief Research Scientist, PC Branch «JRSC» - «RI SIE» (Moscow). E-mail: as-petr@yandex.ru
Abstract:
Determination of the angular position or direction finding sources of radio emission is one of the main tasks of the radio electromagnetic environment monitoring in the air. And so this topic is dedicated to the many task-oriented monographs or large sections of them, as well as thematic reviews and extensive periodicals. The aim of this review is to give an initial idea of the modern, including covariance directional finding algorithms, beginner to work on these problems or just wants to get on her overall performance and also to provide a starting list of literature in this area. In the first section briefly outlines the three main directional finding methods - amplitude, with its amplitude-differential option, phase and covariance with short explanation and historical studies. The second introduced the definition of multiplicative forms of the second and higher orders. In the following five sections describe the basic covariance algorithms, among which the MUSIC, ROOT-MUSIC, ESPRIT realization for the uniform circular antenna array, as well as the rank reduction algorithm RARE. These reductions dash separates Russian and English abbreviations. The functioning of each of them is tested on personal computers, the results of calculations and graphical dependencies. The method of estimating the Cramer-Rao bound determining the limiting resolution described in section 8, where also the results of the simulation. Definition for received signal number IRI present in the broadcast material 9 section. Questions bearing on Iran with the definition of the polarization of the received signals are affected in 10 section. Finally, at 11 section presents the pseudo-spectral function (PSF) algorithms, which by the time of their creation was preceded by the emergence of the basic algorithm MUSIC, given their comparison. Conducted a review of methods suggests that each of them has certain advantages, as well, and its inherent disadvantages. Amplitude is the most advantageous energy potential. Amplitude-difference of its kind, giving the first energy significantly greater in the slope of DF characteristics. Phase method, in turn, yields the energy of the amplitude-difference. However, he has as little bearing error and in contrast to previous methods using a circular antenna array with time to explore all the space on the azimuth angle. And the amplitude and phase method sin that work poorly when in the ether there are multiple emitters. Covariance methods of the second and higher orders allow maximum precision to allow multiple emitters. To implement these methods have to create a complex and time-consuming computationally algorithms. Using amplitude-differential, phase and covariance algorithms with a large ratio of signal power to noise power can achieve angular super resolution and with multiple stock to overcome antenna to techniques known in the Rayleigh limit. The General conclusion that follows from the materials made of the review, is that serious dynamical system inevitably will be a complex hardware-software complex, which should provide different, with advanced, technical, algorithmic, and software.
Pages: 3-32
References

 

  1. Kellogg R.L., Mack E.E., Crews C.D. Direction Finding Antennas and Systems / in J. Volakis (ed.) Antenna Engineering Handbook. Fourth Edition. New York: McGraw-Hill, 2007. Chapter 47.
  2. Tuncer E., Frienlander B. Classical and Modern Direction-of-Arrival Estimation. Elsivier Inc. 2009. 429 pp.
  3. Advances in Direction-of-Arrival Estimation, Edited by S. Chandran.Artech House. 2006. 474 pp.
  4. Van Trees H.L. Detection, Estimation, and Modulation Theory. Part IV. Optimum Array Processing. John Wiley & Sons. 2002. 1471 pp.
  5. Haykin S., Liu K. Handbook on array processing and sensor networks. John Wiley&Sons. 2009. 904 pp.
  6. Bakulev P.A., Sosnovskijj A.A. Radiolokacionnye i radionavigacionnye sistemy. M.: Radio i svjaz. 1994. 296 s.
  7. Rembovskijj A.M., Ashikhmin A.V., Kozmin V.A. Radiomonitoring: zadachi, metody, sredstva. M.: Gorjachaja linija - telekom. 2006. 492 s.
  8. Saidov A.S., Tagilaev A.R., Aliev N.M., Aslanov G.K. Proektirovanie fazovykh avtomaticheskikh radiopelengatorov. M.: Radio i svjaz. 1997. 160 s.
  9. Kukes I.S., Starik M.E.Osnovy radiopelengacii. M.: Sov. radio. 1964. 639 s.
  10. Denisov V.P. Dubinin D.V. Fazovye radiopelengatory. Tomsk: Tomskijj gosudarstvennyjj universitet upravlenija i radiomonitoringa. 2002. 251 s.
  11. Mezin A.N. Avtomaticheskie radiopelengatory. M.: Svjaz. 1969. 216 s.
  12. Pelengatornye antennye reshetki // Antenny. 2012. Vyp. 4 (179). 72 s.
  13. Krim H., Viberg M.Two Decades of Array Signal Processin Research. The Parametric Approach // IEEE Signal Processing Magazine. 1996. July. R. 67-94.
  14. Paulray A.J., Papadias C.B. Space-Time processing for Wireless Communications // IEEE Signal Processing Magazine. 1997.R.49-83.
  15. Godara L.C.Application of Antenna Arrays to Mobile Communications, Part II: Beam-Forming and Direction-of-Arrival Considerations // Proceedings of the IEEE. 1997. V. 85. № 8.R.1195-1245.
  16. Ermolaev V.T., Flaksman A.G. Metody ocenivanija parametrov istochnikov signalov i pomekh, prinimaemykh antennojj reshetkojj // Ucheb.-metodich. materialy. Nizhegorodskijj gosudarstvennyjj universitet im. N.I. Lobachevskogo. 2007. 100 s.
  17. Balanis C.A. Antenna theory: analysis and design. N.-Y.: John Wiley&Sons. 1997. 941 pp.
  18. Markov G.T., Sazonov D.M. Antenny. M.: EHnergija. 1975. 528 s.
  19. Fastovich S.V., Petrov A.S. Kolcevye antennye reshetki s umenshennym urovnem bokovykh lepestkov diagrammy napravlennosti // Antenny. 2013. Vyp. 11(198). S. 19-22.
  20. Leonov A.I., Fomichev K.I. Monoimpulsnaja radiolokacija. M.: Sov. radio. 1970. 312 s.
  21. Petrov A.S., Pechurin V.A., TegelS.A. Monoimpulsnaja antennaja sistema nazemnogo punkta upravlenija BPLA // Infor­macionno-izmeritelnye i upravljajushhie sistemy. 2009. T. 7. № 7. S. 74-80.
  22. Schmidt R.O. Multiple emitter location and signal paranleter estimation // IEEE Trans. Antenn. Propagat.1986. V. AP-34. R. 271-280.
  23. Roy R., Kailath T. ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques // Transactions On Acoustics, Speech, And Signal Processing. 1989. V 37. №7. R. 984-995.
  24. Mathews Ch.P., Zoltowski M.D. Eigenstructure Techniques for 2-D Angle Estimation with Uniform Circular Arrays // IEEE Transactions On Signal Processing. 1994. V. 42. №9. R. 2395-2407.
  25. Pesavento M., Böhme J.F. Direction of arrival estimation in uniform circular arrays composed of directional elements / in Proc. Sensor Array and Multichannel Signal Processing Workshop.Aug. 2002. R. 503-507.
  26. Pesavento M., Gershman A.B., WongK.M. Direction Finding in Partly Calibrated Sensor Arrays Composed of Multiple Subarrays // IEEE Transactions On Signal Processing. 2002. V. 50. № 9. R. 2103-2115.
  27. Hui H.T. Improved compensation for the mutual coupling effect in a dipole array for direction finding // IEEE Trans. Antennas Propag.Sep. 2003.V.51. № 9. R. 2498-2503.
  28. Goossens R., Rogier H. A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling // IEEE Trans. Antennas Propag. 2007.V. 43. R. 841-849.
  29. Wang B.H., Hui H.T., Leong M.S. Decoupled 2D Direction of Arrival Estimation Using Compact Uniform Circular Arrays in the Presence of Elevation-Dependent Mutual Coupling // IEEE Transactions On Antennas And Propagation. 2010. V. 58. № 3. R. 747 - 755.
  30. Korobkov M.A. Metod sokrashhenija vychislitelnykh zatrat v algoritme UCA-Root-Rare // Molodojj uchenyjj. 2014. № 16.  S. 88-90. http://www.moluch.ru/archive/75/12797/
  31. Korobkov M.A. Algoritm UCA-Root-Rare dlja zadach pelengovanija istochnikov radioizluchenija odnorodnojj kolcevojj antennojj reshjotkojj // Molodojj uchenyjj. 2014. № 13. S. 47-54. http://www.moluch.ru/archive/72/12093/
  32. Petrov A.S., ZHeksenov M.A. Skanirujushhaja antennaja reshetka, sosredotochennaja v obeme fizicheskojj tochki // Radiotekhnika i ehlektronika. 2014. T. 59. № 3. S. 260-263.
  33. Nehorai A., Paldi E. Vector-sensor array processing for electromagnetic source localization // IEEE Trans. Signal Process. Feb. 1994.V. 42. № 2. R. 376-398,
  34. Zoltowski M.D., Wong K.T. ESPRIT-based 2-D direction finding with a sparse array of electromagnetic vector-sensors // IEEE Trans. Signal Process. Aug. 2000. V. 48. № 8. R. 2195-2204.
  35. Chick D.F., Collins P.J., Goodman S.A., Martin R.K., Terzuoli A.J. Direction Finding With Mutually Orthogonal Antennas //  AP-S/URSI. 2011. R. 2853-2856.
  36. Li J., Compton T. Angle estimation using a polarization sensitive Array // IEEE Trans. Antennas Propagat. 1991.V. 39. R. 1539-1543.
  37. Li J., Compton T. Two-dimensional angle and polarization estimation using the ESPRIT algorithm // IEEE Trans. Antennas Propag. May 1992.V. 40. № 5. R. 550-555.
  38. Weiss A.J., Friedlander B. Performance analysis of diversely polarized antenna arrays // IEEE Trans. Signal Process. 1991.V. 39.  № 7. R.1589-1603.
  39. Li J., Stoica P., Zheng D. Efficient Direction and Polarization Estimation with a COLD Array // IEEE Transactions On Antennas And Propag. April, 1996.V. 44. № 4. R. 539-547.
  40. Barabell A.J., Capon J., DeLong D.F., Johnson J.R., Senne K.D. Performance Comparison of Superresolution Array Processing Algorithms. Lincoln Laboratory. MIT. June 1998. 193 p. http://www.dtic.mil/dtic/tr/fulltext/u2/a347296.pdf
  41. Gohberg I., Lancaster P., Rodman L. Matrix polynomials // Society for Industrial and Applied Mathematics. 2009. 434 p.
  42. Korn G., Korn T. Spravochnik po matematike (dlja nauchnykh rabotnikov i inzhenerov). M.: Nauka. 1974. 832 s.