350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2015 г.
Article in number:
1D- and 2D-models of quasicrystalline structure approximants
Keywords:
approximants
quasicrystalline structure
multilayer systems
aperiodic gratings
patterns
scaling
Authors:
P.V. Korolenko - Dr.Sc.(Phys.-Math.), Professor, Department of OPTICS, SPECTROSCOPY and Nanosystems Physics, Physics Faculty, Lomonosov Moscow State University
A.Yu. Mishin - Engineer, Department of Optics, Spectroscopy and Nanosystems Physics, Physics Faculty, Lomono-sov Moscow State University
S.B. Ryzhikov - Ph.D.(Phys.-Math.), Associate Professor, Department of general physics, Physics Faculty, Lomo-nosov Moscow State University
Yu.V. Ryzhikova - Ph.D.(Phys.-Math.), Senior Researcher, Department of Optics, Spectroscopy and Nanosystems Physics, Physics Faculty, Lomonosov Moscow State University
Abstract:
Efficient algorithms for constructing different approximants of quasicrystalline systems are developed. 2D aperiodic grating and multilayer system (1D aperiodic photonic crystals) are considered as such systems. For their construction are used properties of Cantor, Thue-Morse, double-period and Fibonacci sequences.
The possibility of identifying for 1D and 2D quasicrystalline structure approximants has appeared by determining patterns which are separate fragments in the optical characteristics and determine the scaling parameters in the fields probing light beams.
Numerical simulation results specify a direct relationship between the scaling characteristics of the light fields and the morphological features of approximant structures. Calculations showed that the scaling properties have all considered optical characteristics as fractal objects (based on the Cantor set) and a fractal-like structures constructed by means of the double period, Thue-Morse and Fibonacci numerical sequences. It is received that the approximants with different levels of generation of elementary cells and belong to one class self-similarity symmetry despite the significant external differences are characterized by same shape patterns and the same scaling coefficients.
The proposed algorithms for constructing approximants with different geometry and calculation of their optical characteristics allowed to establish a high degree of pattern stability in the scaling distributions of the aperiodic 1D photonic crystals and 2D diffraction gratings.
Pages: 17-23
References
- Bogoljubov A.N., Petukhov A.A., SHapkina N.E. Opticheskaja difrakcija na fraktalnykh reshetkakh // Vestnik Mosk. un-ta. Ser. 3. Fizika. Astronomija. 2008. № 2. S. 7-10.
- Negro L.D. Optics of Aperiodic Structures - Fundamentals and Device Applications.CRC Press Taylor & Francis Group. 2014.
- Potapov A.A. Fraktaly v radiofizike i radiolokacii. M.: Logos. 2002.
- Ammon L.JU., ZHabrev V.A., Margolin V.I. Modelirovanie processov sinteza fraktalnykh nanorazmernykh plenok dlja fraktalnykh antenn i ustrojjstv nanoradioehlektroniki // Izvestija SPBGEHTU "LEHTI". 2009. № 6. S. 3-10.
- Albuquerque E.L., Cottam M.G. Theory of elementary excitation in quasiperiodic structures // Phys. Rep. 2003. V. 376. P. 225-337.
- Steurer W., Sutter-Widmer D. Photonic and phononic quasicrystals // J. Phys. D.: Appl. Phys. 2007. V. 40. P. R229-R247.
- Schluter H.Models of the atomic structure of approximants and related quasicrystals. SCHLUTER CONSULT. Gottingen. 2011.
- Djachenko P.N., Mikljaev JU.V. Dvukhmernye approksimanty fotonnykh kvazikristallov, poluchennye metodom golograficheskojj litografii // Kompjuternaja optika. 2006. №30. S. 23-29.
- Derlugjan P.D., Ivanov V.V., Ivanova I.V., Loginov V.T., Danjushina G.A, SHishka V.G., SHHerbakov I.N.Fraktalnye struktury 2D-prostranstva kak vozmozhnye approksimanty konfiguracijj mezhfaznykh granic i raspredelenija faz na poverkhnosti antifrikcionnykh kompozicionnykh pokrytijj // Sovremennye naukoemkie tekhnologii. 2013. №9. S. 86-88.
- Born M., Volf EH. Osnovy optiki. M.: Nauka. 1970.
- Korolenko P.V., Mishin A.Yu., Ryzhikova Yu.V.Scaling in the characteristics of aperiodic multilayer structures //Journal of Optical Technology. 2012. V.79. № 12. P. 754-757.
- Zotov A.M., Kim E.G., Korolenko P.V., Ryzhikova JU.V. Modelirovanie aperiodicheskikh struktur so skejjlingovymi opticheskimi kharakteristikami // EHlektromagnitnye volny i ehlektronnye sistemy. 2013. T.18. № 12. S. 10-15.
- Korolenko P.V., Ryzhikov S.B., Ryzhikova Yu.V. Pattern stability in diffraction of light from structures with self-similarity symmetry. // Phys. Wave Phenom. 2013. V. 21. № 4. P. 256-260.