350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2015 г.
Article in number:
Impact of bandwidth and center frequency on the results of ultra-wideband power delay profile measurements
Authors:
P.N. Zakharov - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, M.V. Lomonosov Moscow State University. E-mail: zakharov1@mail.ru A.F. Korolev - Ph. D. (Phys.-Math.), Associate Professor, Faculty of Physics, M.V. Lomonosov Moscow State University. E-mail: korolev_phys@mail.ru E.V. Mitrofanov - Post-graduate Student, Graduate Research Scientist, Kotel\'nikov Institute of Radioengineering and Electronics of RAS. E-mail: mitrofanov_ireran@mail.ru V.A. Cherepenin - Dr. Sc. (Phys.-Math.), Professor, Corresponding Memeber of RAS, Deputy Director of Kotel\'nikov Institute of Radioengineering and Electronics of RAS. E-mail: cher@cplire.ru
Abstract:
The dependence of power delay profiles upon bandwidth (temporal resolution) and central frequency is studied using ultrawideband measurements. The necessary measurement parameters were defined for creating wideband channel models, verification and con-struction of accurate site-specific radiowave propagation models, investigation of propagation mechanisms. The accuracy of ray tracing and numerical Maxwell-s equation solver models were estimated and compared on the basis of measured delay profiles. For the considered complex indoor environment the majority of significant paths has been resolved with 1 GHz and especially 2−2.4 GHz bandwidth. 2 GHz bandwidth provided 700 ps temporal resolution, allowing to distinguish paths with 21 cm difference. Thus, the major portion of environmental irregularities had the size of 20 cm and more.
Pages: 60-68
References

 

  1. Fuschini F., El-Sallabi H., Degli-Esposti V.et al. Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation // IEEE Transactions on Antennas and Propagation. 2008. V. 56. № 3. P. 848−857.
  2. Lee D.C.K., Sowerby K.W., Neve M.J. Extracting fine multipath detail from measured data at 5.8 GHz // Proc. IEEE 59th Vehicular Technology Conference (VTC 2004-Spring). 2004. V. 1. P. 74−78.
  3. Zhu H., Takada J., Kobayashi T. The verification of a deterministic spatio-temporal channel modeling approach by applying a deconvolution technique in the measurement // Proc. IEEE 53rd Vehicular Technology Conference (VTC 2001-Spring). 2001. V. 1. P. 362−366.
  4. Kattenbach R., Fruchting H. Wideband measurements of channel characteristics in deterministic indoor environment at 1.8 GHz and 5.2 GHz // Proc. Sixth IEEE International Symposium on Personal. Indoor and Mobile Radio Communications (PIMRC\'95). 1995. V. 3. P. 1166−1170.
  5. Loredo S., Valle L., Torres R.P. Accuracy analysis of GO/UTD radio-channel modeling in indoor scenarios at 1.8 and 2.5 GHz // IEEE Antennas and Propagation Magazine. Oct. 2001. V. 43. № 5. P. 37−51.
  6. Tan S.Y. Investigation of propagation mechanisms in a typical cellular communication system // Proc. Asia-Pacific Microwave Conference. 2000. P. 253−256.
  7. El-Hadidy M., Mohamed T.O., Feng Zheng, Kaiser T. 3D hybrid EM ray tracing deterministic UWB channel model, simulations and measurements // Proc. IEEE International Conference on Ultra-Wideband (ICUWB-2008). 2008. V. 2. P. 1−4.
  8. Tiberi G., Bertini S., Malik W.Q.et al. Analysis of realistic ultrawideband indoor communication channels by using an efficient ray tracing based method // IEEE Transactions on Antennas and Propagation. 2009. V. 57. № 3. P. 777−785.
  9. Kloch C., Liang G., Andersen J.B.et al. Comparison of measured and predicted time dispersion and direction of arrival for multipath in a small cell environment // IEEE Transactions on Antennas and Propagation. 2001. V. 49. № 9. P. 1254−1263.
  10. Zakharov P.N., Korolev A.F., Mitrofanov E.V., Sukhorukov A.P., CHerepenin V.A. EHksperimentalnyjj maket sverkhshirokopolosnojj radiolokacionnojj sistemy na osnove ansamblja signalov OFDM // EHlektromagnitnye volny i ehlektronnye sistemy. 2014. №2. S. 51-56.