350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2014 г.
Article in number:
The numerical solution of carrying oscillation forming problem or multi-pair communication system over electricity-conductive lines
Keywords:
digital subscriber line
electricity-conductive line
multi-pair bonding
crosstalk
carrying oscillation
basis function
sequential quadratic programming
Authors:
K.A. Batenkov - Ph. D. (Eng.), Academy of Federal Security Guard Service of Russian (Orel).E-mail: pustur@yandex.ru
D.A. Rybolovlev - Ph. D. (Eng.), Academy of Federal Security Guard Service of Russian (Orel). E-mail: Dmitrij-rybolovlev@yandex.ru
D.A. Rybolovlev - Ph. D. (Eng.), Academy of Federal Security Guard Service of Russian (Orel). E-mail: Dmitrij-rybolovlev@yandex.ru
Abstract:
In the article the numerical solution of carrying oscillation forming problem for multi-pair communication system via electricity cable using sequential quadratic programming is proposed. The main purpose of the paper consists in data rate increase and/or communication reliability rising in the case of multi-pair bonding.
In the introduction the actuality of DSL technology enhancement and development is emphasized. The perspective multi-pair bonding approach is presented.
The optimizing problem of carrying oscillation forming for communication system realizing DSL multi-pair mode is assigned. The problem is classified as a conditional optimization problem with the mixed constraints. The choice of a sequential quadratic programming as most effective solution method is reasoned.
The numerical solution of the problem is given. Modified Lagrange's function is used. The correction of a Hesse matrix for Lagrange's function is carried out by means of the BFGS method.
It is shown that usage of optimal carrying oscillations versus quasioptimal and nonoptimal results in subchannel signal-to-noise ratio increase. The achievable data rate increase and communication reliability rising are estimated.
Pages: 22-29
References
- Technical White Paper for SuperMIMO [E'lektronny'j resurs]. E'lektron. dan. Rezhim dostupa: http://www.huawei.com/en/static/HW‑141054.pdf. Data obrashheniya: 11.01.2013.
- Ry'bolovlev D.A. Matematicheskaya model' sistemy' peredachi informaczii, uchity'vayushhaya vzaimnoe vliyanie e'lektroprovodny'x linij svyazi // Fundamental'ny'e i prikladny'e problemy' texniki i texnologii. 2012. № 2. S. 126−135.
- Fedorov V.V., Batenkov K.A. CHislenny'e metody' maksimina. M.: Nauka. 1979. 280 s.
- Ry'bolovlev D.A. Algoritm formirovaniya kvazioptimal'ny'x nesushhix kolebanij dlya sistemy' peredachi informaczii, realizuyushhej mnogparnoe svyazy'vanie e'lektroprovodny'x linij svyazi // Vestnik RGRTU. 2013. № 4. № 46. CH. 1. S. 26−30.
- Izmailov A.F., Solodov M.V. CHislenny'e metody' optimizaczii: ucheb. posobie. M.: FIZMATLIT. 2005. 304 s.
- Gill F., Myurrej U., Rajt M. Prakticheskaya optimizacziya / Per. s angl. M.: Mir. 1985. 509 s.
- Reklejtis G., Rejvindran A., Re'gsdel K. Optimizacziya v texnike. V 2 kn. Kn. 2. M.: Mir. 1986. 320 s.
- Powell M. A fast algorithm for nonlinearly constrained optimization calculations // Numerical Analysis. 1977. P. 144−157.
- Gantmaxer F.R. Teoriya matricz. M.: Nauka. 1966. 576 s.
- Gill P.E., Murray W., Wright M.H. Numerical Linear Algebra and Optimization. New York: Addison Wesley. 1991. 426 p.
- Lankaster P. Teoriya matricz. M.: Nauka. 1973. 280 s.
- Nocedal J., Stephen J. Wright Numerical Optimization / Second Edition. New York: Springer. 2006. 653 p.