350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2014 г.
Article in number:
Generalization of the physical theory of diffraction for backscattering from the wedge with impedance faces
Authors:
V.V. Akhiyarov - Ph. D. (Eng.), Leading Research Scientist, Department «Radio electronic systems and devices», Bauman Moscow State Technical University. E-mail: vakhiyarov@gmail.com
A.B. Borzov - Dr. Sc. (Eng.), Professor, Head of Department, Department of Autonomus Information and Control Systems, Bauman Moscow State Technical University. E-mail: wave@sm.bmstu.ru
V.B. Suchkov - Ph. D. (Eng.), Associate Professor, Department of Autonomus Information and Control Systems, Bauman Moscow State Technical University. E-mail: wave@sm.bmstu.ru
Abstract:
In this article the development of the physical theory of diffraction for backscattering from an impedance wedge is described. It is shown that in the case of impedance boundary conditions Ufimtsev-s function f0(g0), which determines the diffraction field from the uniform current must be multiplied by the reflection coefficient from the corresponding face of the wedge, and the function f(g) for the total diffraction field must be changed by the G.D. Malyuzhinets - diffraction coefficient. The wedge backscattering diagrams obtained with the use that theory are presented, and the comparison with calculations based on the Malyuzhinets - theory are presented. The angular diagrams of the function f1(g1), which determines the diffraction field produced by the non-uniform part of the current are obtained.
Pages: 49-56
References

  1. Ufimczev P.YA. Teoriya difrakczionny'x kraevy'x voln v e'lektrodinamike // per. s angl. M.: BINOM. Laboratoriya znanij, 2007. 366 s.
  2. Norris A.N., Osipov A.V. Far-field analysis of the Malyuzhinets solution for plane and surface waves diffraction by an impedance wedge. Wave Motion. 1999. V. 30. № 7. P. 69−89.
  3. Babich V.M., Lyalinov M.A., Grikurov V.E'. Metod Zommerfel'da-Malyuzhincza v teorii difrakczii. SPb.: SPBGU. 2003. 104 s.
  4. Axiyarov V.V. Reshenie zadachi difrakczii na impedansnom kline // E'lektromagnitny'e volny' i e'lektronny'e sistemy'. 2008. T. 13. № 11. S. 19−27.
  5. Osipov A.V., Norris A.N. The Malyuzhinets theory for scattering from wedge boundaries: a review. Wave Motion. 1999. V. 29. P. 313−340.
  6. Ufimczev P.YA. Metod kraevy'x voln v fizicheskoj teorii difrakczii. 1962.
  7. Borzov A.B., By'strov R.P., Zasovin E'.A. i dr. Millimetrovaya radiolokacziya: metody' obnaruzheniya i navedeniya v usloviyax estestvenny'x i organizovanny'x pomex. M.: Radiotexnika. 2010. 376 s.
  8. Antifeev V.N., Borzov A.B., Suchkov V.B. Fizicheskie modeli radiolokaczionny'x polej rasseyaniya ob''ektov slozhnoj formy': Ucheb. posobie. M.: Izd­vo MGTU im. N.E'.Baumana. 2003. 63 s.
  9. Keller J.B. Geometrical theory of Diffraction // Journal of Optical Society of America. 1962. V. 52. №. 2. P. 116−130.
  10. Ufimtsev P.Ya. Fundamentals of the Physical Theory of Diffraction. New York. Wiley & Sons. Inc. 2007.
  11. Hacivelioglu F., Sevgi L., Ufimtsev P.Ya. Electromagnetic Wave Scattering from a Wedge with Perfectly Reflecting Boundares: Analysis of Asymptotic Techniques. IEEE AP Magazine. 2011. V. 53. № 3. P. 232−252.
  12. Osipov A.V. Simple Approximation of the Malyuzhinets Function for Describeing Wedge Diffraction. IEEE Trans. On Antennas and Propagation. 2005. V. 53. № 8. P. 2773−2776.
  13. Axiyarov V.V. Asimptoticheskoe reshenie zadachi odnokratnoj i posledovatel'noj difrakczii // E'lektromagnitny'e volny' i e'lektronny'e sistemy'. 2013. T. 18. № 7. S. 4−11.