350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2014 г.
Article in number:
Empirical mode decomposition with combined algorithm for finding extrema
Authors:
A.L. Priorov - Dr. Sc. (Eng.), Associate Professor, Yaroslavl State University
P.O. Pavlovichev - Post-graduate Student, Yaroslavl State University
A.I. Topnikov - Ph. D. (Eng.), Assistant, Yaroslavl State University
Abstract:
In this paper, empirical mode decomposition as analysis and processing method is examined. This method was developed by Norden Huang and his colleagues in 1998. This technique can be used for analysis non-stationary signals and characterizes such properties as a posteriori, adaptability and originality. The one of the stages of empirical mode decomposition algorithm is searching signal-s extrema. Method of inequalities is the basic way for this searching. Also, alternative way exists, and it is called parabolic interpolation. This technique was proposed by Klionsky in 2011. Practical realization of interpolation gave us some features: frequency dependence of threshold and inaccuracy of algorithm, which making some troubles for decomposition. To overcome this difficulty combined algorithm was proposed, and comparison combined algorithm and method of inequalities was showed the advantages of first way. Thus, improvement of procedure of searching extrema was achieved.
Pages: 31-37
References

  1. Bron A., Raz S., Malah D. Wavelet-based denoising of speech // Proc. 22nd IEEE Convention of Electrical and Electronics Engineers in Israel. Tel-Aviv. 2002. P. 1−3.
  2. Parajuli A., DeBrunner V. Speech enhancement using perceptual wavelet thresholding with the ephraim and Malah noise suppressor and auditory masking // Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers. 2005. P. 301−304.
  3. Savvatin A.I., Novoselov S.A., Priorov A.L. Primenenie bankov fil'trov dlya postroeniya sistemy' zashhishhennoj peredachi rechevoj informaczii // E'lektrosvyaz'. 2011. № 9. S. 48−51.
  4. Huang, etc. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A. The Royal Society, Great Britain. 1998. V. 454. P. 903−995.
  5. Klionskij D.M. Dekompozicziya na e'mpiricheskie mody' s parabolicheskoj interpolyacziej ogibayushhix v zadachax ochistki signalov ot shuma // Dokl. 13-j mezhd. konf. «CZifrovaya obrabotka signalov i ee primenenie». Rossiya. Moskva. 2011. T. 1. S. 120−123.
  6. Klionsky D.M., Oreshko N.I., Geppener V.V. Applications of empirical mode decomposition for processing non-stationary signals // Pattern Recognition and Image Analysis. 2008. V. 13, № 3. P. 390−399.
  7. Klionskij D.M., Neuny'vakin I.V., Oreshko N.I., Geppener V.V. Dekompozicziya na e'mpiricheskie mody' i ee primenenie dlya identifikaczii informativny'x komponent i prognozirovaniya signalov s ispol'zovaniem nejronny'x setej // Nejroinformatika. CH. 2. 2010. S. 69−80.
  8. Klionskij D.M., Oreshko N.I., Geppener V.V. Dekompozicziya na e'mpiricheskie mody' i ee ispol'zovanie pri analize drobnogo brounovskogo dvizheniya // CZifrovaya obrabotka signalov. 2008. № 3. S. 37−45.
  9. Donghoh Kim, Hee­Seok Oh. EMD: A package for empirical mode decomposition and Hilbert spectrum // The R Journal. 2009. V. 1. № 1. P. 40−46.
  10. Suraj S. Sheth. Extraction of pitch from speech signals using Hilbert Huang transform: thesis. Roll №: 07010245 / Indian Institute of Technology. India, Guwahati. 2011. 36 p.
  11. Ke Gong. Speech processing using the empirical mode decomposition and the Hilbert transform: thesis / Concordia university. Canada. Montreal. 2004. 71 p.
  12. Ringeval F., Chetouani M. Hilbert-Huang transform for non-linear characterization of speech rhythm // NOLISP. Spain. 2009. 10 p.
  13. Schlotthauer G., Torres M.E., Rufiner H.L. Pathological voice analysis and classification based on empirical mode decomposition // Development of multimodal interfaces: Active listening and synchrony. 2010. V. 5967. P. 364−381.
  14. Jian­Da Wu, Yi­Jang Tsai. Speaker identification system using empirical mode decomposition and an artificial neural network // Expert system with applications. 2011. V. 38. P. 6112−6117.
  15. Kuo­Hao Wu, Chia­Ping Chen. Empirical mode decomposition for noise-robust automatic speech recognition: poster // 11th Annual Conference of the International Speech Communication Association. Japan. Makuhari. 2010. P. 2074−2077.
  16. Jan T., Wang W. Empirical mode decomposition for joint denoising and dereverberation // 19th European Signal Processing Conference. Spain. Barcelona. 2011. P. 206−210.
  17. Mijović B., etc. Source separation from single-channel recordings by combining empirical mode decomposition and independent component analysis // IEEE Transactions on Biomedical Engineering. 2010. V. 57, № 9. P. 2188−2196.
  18. Mijović B., De Vos M., Gligorijević I., Van Huffel S. Combining EMD with ICA for extracting independent sources from single channel and two-channel data // 32nd Annual International Conference of the IEEE EMBS. Argentina. Buenos Aires. 2010. P. 5387−5390.
  19. Deger E. Noise-thresholding with empirical mode decomposition for low distortion speech enhancement: thesis / The University of Tokyo. Japan. Tokyo. 2008. 80 p.
  20. Pavlovichev P.O., Pikunova T.M. Parabolicheskaya interpolyacziya pri e'mpiricheskoj modovoj dekompoziczii rechevogo signala // Sb. dokl. XIII mezhvuz. nauchno-prakt. konf. «Problemy' razvitiya i primeneniya sredstv PVO v sovremenny'x usloviyax». Rossiya. YAroslavl'. 2013. S. 62−66.
  21. Aldoshina I. Osnovy' psixoakustiki. CH. 17: Slux i rech' // Zvukorezhisser. 2002. № 1. 16 s.
  22. Turovskij YA.A., Kurgalin S.D., Vaxtin A.A. Obrabotka signala e'lektroe'nczefalogrammy' na osnove analiza chastotny'x zavisimostej i vejvlet-preobrazovaniya // Biomediczinskaya radioe'lektronika. 2012. № 12. S. 39−45.