350 rub
Journal Electromagnetic Waves and Electronic Systems №9 for 2013 г.
Article in number:
Theoretical investigation of nanoplasmonic waveguide structures
Authors:
A.M. Lerer - D.Sc. (Phys.-Math.), Professor, Southern Federal University I.V. Donets - Ph.D. (Phys.-Math.), Associate Professor, Southern Federal University G.A. Kalinchenko - Ph.D. (Phys.-Math.). E-mail: kalinchenko@yahoo.com P.V. Makhno - Ph.D. (Phys.-Math.), Associate Professor, Southern Federal University
Abstract:
A vector integral-differential equation to describe electromagnetic waves propagation in three-dimensional periodic metal-dielectric structures was developed. Exact solution of the equation is obtained with Galerkin method taking into account complex dielectric constant of metals in optical range. A simple method to find out complex propagation constant for low-loss waveguide structures is developed and proved. Surface plasmon-polariton (SPP) waves were simulated for one and two dimensional periodic nanoplasmonic structures containing thin metal layers. In particular two types of nano waveguides such as: a metal strip on dielectric substrate and a dielectric strip on metal-dielectric substrate were investigated, also we studied propagation in three types of photonic crystals. It is shown that there is a possibility of high effective refractive index SPP propagation.
Pages: 5-13
References

  1. Stockman M.I. Nanoplasmonics: past, present, and glimpse into future // Opt. Express. 2011. V. 19(22). R. 22029-22106.
  2. Barnes W.L., Dereux A., Ebbesen T.W. Surface Plasmon Subwavelength Optics // Nature. 2003. № 424. R. 824(830.
  3. Hochberg M., Baehr-Jones T., Walker C., Scherer A. Integrated plasmon and dielectric waveguides // Optics Express. 2004. V. 12. № 22. R. 54811-54816.
  4. Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures // Phys. Rev. 2000. V. B 61(15). R. 10484-10503.
  5. Gosciniak J., Volkov V.S., Bozhevolnyi S.I., Markey L., Massenot S., Dereux A. Fiber-coupled dielectric-loaded plasmonic waveguides // Opt. Express. 2010. № 18. R. 5314-5319.
  6. Liu L., Han Z., He S. Novel surface plasmon waveguide for high integration // Opt. Express. 2005. № 13(17). R. 6645-6650.
  7. Pannipitiya A., Rukhlenko I.D., Premaratne M., Hattori H.T., Agrawal G.P. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure // Opt. Express. 2010. № 18. R. 6191-6204.
  8. Zia R., Selker M.D., Catrysse P.B., Brongersma M.L. Geometries and materials for subwavelength surface plasmon modes // J. Opt. Soc. Am. 2004. V. A 21. № 12. R. 2442-2446.
  9. Holmgaard T., Bozhevolnyi S.I. Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides // Phys. Rev. 2007. V. B75. № 24. R. 245-405.
  10. Bozhevolnyi S.I., Volkov V.S., Devaux E., Ebbesen T.W. Channel plasmon-polariton guiding by subwavelength metal grooves //  Phys. Rev. Lett. 2005. V. 95. № 4. R. 046(802.
  11. Novikov I.V., Maradudin A.A. Channel polaritons // Phys. Rev. 2002. № B 66. R. 035403.
  12. Gramotnev D.K., Pile D.F.P. Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface // Appl. Phys. Lett. 2004. № 85. R. 6323-6325.
  13. Bozhevolnyi S.I., Volkov V.S., Devaux E., Ebbesen T.W. Channel plasmon-polariton guiding by subwavelength metal grooves // Phys. Rev. Lett. 2005. № 95. R. 046802.
  14. Arbel D., Orenstein M. W-shaped plasmon waveguide for silicon based plasmonic modulator // Proceedings of IEEE LEOS Annual Meeting Conf. 2006. R. 262-263.
  15. Moreno E., Rodrigo S.G., Bozhevolnyi S.I., Martín-Moreno L., García-Vidal F.J. Guiding and focusing of electromagnetic fields with wedge plasmon polaritons // Phys. Rev. Lett. 2008. V. 100. № 2. R. 023901.
  16. Yablonovich E. Inhibited Spontaneous emission in Solid State Physics and Electronics // Phys. Rev. Lett. 1987. V. 58. № 20. P. 2059.
  17. Joannopoulus J.D., Meade R.D., Photonic Crystals: Molding the Flow of Light. Princeton, NJ: Princeton Univ. Press. 1995.
  18. Bankov S.E. E'lektromagnitny'e kristally'. M.: Fizmatlit. 2010.
  19. Chi-O Cho, Young-Geun Roh, Yeonsang Park, Jae-Soong I, Heonsu Jeon, Beom-Seok Lee, Hye-Won Kim, Young-Ho Choe, Mingyu Sung, J.C. Woo. Towards nano-waveguides // Current Applied Physics. April 2004. V. 4. Iss. 2-4. P. 245-249.
  20. Degiron A., Smith D.R. Numerical simulations of long-range plasmons // Opt. Express. 2006. № 14. R. 1611-1625.
  21. Buckley R., Berini P. Figures of merit for 2D surface plasmon waveguides and application to metal stripes // Opt. Express. 2007. № 15. R. 12174-12182.
  22. Dellagiacoma C., Lasser T., Martin O.J.F., Degiron A., Mock J.J., Smith D.R. Simulation of complex plasmonic circuits including bends // Opt. Express. 2011. № 19. R. 18979(18988.
  23. Tae Kim, Jung Jin Ju, Suntak Park, Min-su Kim, Seung Koo Park, Myung-Hyun Lee Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides // Opt. Express. 2008. № 16. R. 13133-13138.
  24. Lerer A.M. Teoreticheskoe issledovanie dvuxmerno periodicheskix nanoplazmonny'x struktur // Radiotexnika i e'lektronika. 2012. T. 57. № 11. C. 1160.
  25. Golovacheva E.V., Lerer A.M., Parxomenko N.G. Difrakcziya e'lektromagnitny'x voln opticheskogo diapazona na metallicheskom nanovibratore. // Vestnik MGU. Ser. 3. Fizika. Astronomiya. 2011. № 1. C. 6.
  26. Lerer A.M. Poteri v provodnikax koplanarny'x volnovodov. // Radiotexnika i e'lektronika. 1984. T. 29. № 7. S. 1289.
  27. http://www.luxpop.com
  28. Kuzneczov V.A., Lerer A.M. Dispersionny'e xarakteristiki pryamougol'nogo die'lektricheskogo volnovoda // Radiotexnika i e'lektronika. 1982. T. 27. № 4. S. 651.
  29.  Kuzneczov V.A., Lerer A.M. Dispersionny'e xarakteristiki die'lektricheskix volnovodov na podlozhkax // Radiotexnika i e'lektronika. 1984. T. 29. № 9. S. 1705.
  30. Kalinchenko G.A., Lerer A.M. E'lektrodinamicheskoe modelirovanie die'lektricheskix reshetok s pomoshh'yu ob''emny'x integral'ny'x uravnenij // Radiotexnika i e'lektronika. 2003. T. 48. № 11. S. 1330.
  31. Kalinchenko G.A., Lerer A.M. Wideband All-Dielectric Diffraction Grating on Chirped Mirror // IEEE/OSA J. of Lightwave Technology. 2010. V. 28. I.18. P. 2743.