350 rub
Journal Electromagnetic Waves and Electronic Systems №8 for 2013 г.
Article in number:
Calculation and vialization of special functions of wave catastrophes
Authors:
A.S. Kryukovsky, S.V. Rogachev
Abstract:
This work describes approaches to development of the special computation system for calculation of wave catastrophes - special functions. Well known traditional methods of wave processes research are compared to the methods of wave catastrophes. The questions of parallel and distributed computation in the framework of SODE method are researched in the work. Performance of the parallel solution is estimated in comparison to the sequential solution. The article shows the results of computation and visualization of some catastrophes got with the developed software. Also, questions of portability, interoperability and extendibility are discussed. The article includes the description of a domain specific language (DSL) developed specially for implementation of program modules describing SODEs of wave catastrophes. The source code on that DSL is showed in the article as an example of usage.
Pages: 10-17
References

  1. Doroxina T.V., Kryukovskij A.S., Lukin D.S. Informaczionnaya sistema «Volnovy'e katastrofy' v radiofizike, akustike i kvantovoj mexanike» // E'lektromagnitny'e volny' i e'lektronny'e sistemy'. 2007. T .12. № 8. S. 7175.
  2. Arnol'd V.I. Teoriya katastrof. M.: Nauka. 1990.
  3. Ipatov E.B., Kryukovskij A.S., Lukin D.S., Palkin E.A. Krae­vy'e katastrofy' i asimptotiki //DAN SSSR. 1986. T. 291. № 4. S. 823827.
  4. Kryukovskij A.S., Lukin D.S., Palkin E.A. Ravnomerny'e asimptotiki i uglovy'e katastrofy' //Doklady' RAN. 1995. T. 341. № 4. C. 456459.
  5. Kryukovskij A.S. Ravnomernaya asimptoticheskaya teoriya kraevy'x i uglovy'x volnovy'x katastrof. M.: RosNOU. 2013.
  6. Kryukovskij A.S. Metod oby'knovenny'x differenczial'ny'x uravnenij dlya rascheta speczial'ny'x funkczij volnovy'x katastrof (SVK) // Mezhvedomstvenny'j sbornik nauchny'x trudov «Difrakcziya i rasprostranenie e'lektromagnitny'x voln». M.: Moskovskij fiziko-texnicheskij institut. 1992. S. 2948.
  7. Doroxina T.V., Kryukovskij A.S., Maly'shenko A.B. Razrabotka chislenny'x algoritmov rascheta i vizualizaczii volnovy'x katastrof // Vestnik RosNOU. Upravlenie vy'chislitel'naya texnika i informatika. M.: Rossijskij novy'j universitet. 2008. Vy'p. 3. S. 25-47.
  8. Kryukovskij A.S., Lukin D.S. Teoriya rascheta e'talonny'x fokal'ny'x i difrakczionny'x e'lektromagnitny'x polej na osnove speczial'ny'x funkczij volnovy'x katastrof // Radiotexnika i e'lektronika. 2003. T. 48. № 8. S. 912921.
  9. Shampine L.F. Error Estimation and Control for ODEs // Mathematics Department. Southern Methodist University. Dallas. 2004.
  10. Aho, Sethi, Ullman, Compilers: Principles, Techniques, and Tools //Addison-Wesley. 2008.