350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2013 г.
Article in number:
Calculating the crosstalk in an electronic unit
Authors:
I.A. Konnikov
Abstract:
For the estimation of a crosstalk, mathematical techniques and models based upon the direct employment of methods of the electromagnetic field theory are offered. The obtained results can be intended for a computer-aided design (CAD) of high dimension projects. The techniques and models are based on all possible usage of analytical methods which are realized beforehand during the development of the applied CAD software unlike the traditional approach demanding a much greater amount of computation in process of modelling. The scientific novelty of the described techniques and models is based upon a modified method of the equivalent propagation constant is offered. According to this method, a solution to the wave equation (i.e., the Green function) is described for the layered medium with a formula of the same kind as for the uniform medium. At such an approach, the induced crosstalk voltage can be calculated by means of integrating all the constituents of the electromagnetic field, not by means of integrating the static one only; the induced voltage is an integral characteristic of the system which consists of a source of the electromagnetic field, its receptor and the channel of propagation of the electromagnetic field. The spatial discretisation of such a system is unnecessary. A technique of integrating the Green function by the criterion of representation is offered, set out and explored. The offered variant of the method of the equivalent propagation constant has enabled to obtain mathematical models that occupy an intermediate position among the known models. On the one hand, they are inferior to the ones employing the strict dynamic approach and spatial discretisation in the respect of the working frequency bandwidth, they being superior to the strict dynamic models in the respect of economy (the required CPU memory and computing time sparing). On the other hand, they are very superior to the models employing reciprocal capacitances and inductances in the respect of both economy and frequency bandwidth as they enable to employ all the constituents of the electromagnetic field, not the static one only, thus being more thorough.
Pages: 53-60
References

 

  1. Konnikov I.A. Princzipy' organizaczii podsistemy' ucheta konstruktivno-texnologicheskix faktorov pri avtomatizirovannom proektirovanii mikrosborok // Voprosy' radioe'lektroniki. Ser. TPO: Nauchno-texnicheskij sbornik. 1982. By'p. 3. S. 8(12.
  2. Konnikov I.A. Vy'chislenie parametrov perexodnogo proczessa v kanale e'lektromagnitnoj svyazi // E'lektromagnitny'e volny' i e'lektronny'e sistemy'. 2007. № 11. C. 52(60.
  3. Konnikov I.A. Matematicheskaya model' konstrukczii mikrosxemy' // Matematicheskoe modelirovanie. 2007. № 4. S. 37(44.
  4. Baskakov S.I. Radiotexnicheskie czepi s raspredelenny'mi parametrami. M.: Vy'sshaya shkola. 1980. 152 s.
  5. Konnikov I.A. Oblast' korrektnogo primeneniya metoda e'kvivalentnoj postoyannoj rasprostraneniya // Trudy' 63-j nauchno-texnich. konf., posvyashhennoj dnyu radio. Aprel' 2008. SPb: SPb GTU «LE'TI». 2008. S. 28(30.
  6. Konnikov I.A. Oblast' korrektnogo ispol'zovaniya metoda e'kvivalentnoj postoyannoj rasprostraneniya // Nauchnaya sessiya GUAP. Sbornik dokladov. V 3 chastyax. Ch.II. Texnicheskie nauki. SPb GUAP: SPb. 2008. S.111(115.
  7. Konnikov I.A. Vliyanie plotnosti raspredeleniya zaryada na emkost' pryamougol'noj plenki v sloistoj srede // E'lektrichestvo. 2007. №3. S. 37(41.
  8. Maksvell Dzh.K. Traktat ob e'lektrichestve i magnetizme. M.: Nauka. 1989. T. 2. 440 s.
  9. Kalantarov P.L., Cejtlin L.A. Raschet induktivnostej. L.: E'nergoatomizdat. 1986. 488 s.
  10. Konnikov I.A. Emkost' tonkogo provodnika pryamougol'nogo secheniya v mikrosxeme // Texnologiya i konstruirovanie v e'lektronnoj apparature. 2006. №4. C. 18(23.
  11. Gonorovskij I.S., Demin M.P. Radiotexnicheskie czepi i signaly'. Izd. 5-e. M.: Radio i svyaz'. 1994. 480 s.
  12. Konnikov I.A. Ispol'zovanie teoremy' Kotel'nikova dlya integrirovaniya funkczii Grina // Nauchnaya sessiya GUAP. Sbornik dokladov. V 3-x chastyax. Ch.II. Texnicheskie nauki. SPb GUAP: SPb. 2012. S. 111(112).