350 rub
Journal Electromagnetic Waves and Electronic Systems №12 for 2013 г.
Article in number:
Increased availability of the optical communications system with atmospheric segments
Authors:
М.А. Карпов - Ph.D. (Eng.), MIREA
Е.В. Егорова - Ph.D. (Eng.), MIREA
Б.А. Кузяков - Ph.D. (Eng.), MIREA
Р.В. Тихонов - Post-graduant Student, MIREA
Х.М. Муад - Post-graduant Student, MIREA
В.С. Башмакова - Post-graduant Student, MIREA
Abstract:
Comparison of the data modeling of the laser beams on the basis of a parabolic equation for the complex field amplitudes waves with the available theoretical and experimental results shows that for a quantitative evaluation in many cases it is required to simulate the random phase screens in the lower-frequency part of the spectrum than it allows you to step sample computational grid . Experimentally shown that anisotropic boundary layer near the surface, turbulence is locally weakly anisotropic and similarity theory by Monin -Obukhov you - holds locally. On the basis of calculations and analysis of the cited studies may be noted that the use of the correction phase correction leads to improved telecommunications system, in comparison with the method of wavefront correction Sarka - Hartmann throughout the range of variations in levels of atmospheric turbulence C-1: from 1E- 16 to 1E -12.
Pages: 38-43
References

  1. Milyutin E.R. Atmosferny'e opticheskie linii svyazi v Rossii // Vestnik svyazi. 2008. № 2. S. 89−90.
  2. Pavlov N.M. Koe'fficzient gotovnosti atmosfernogo kanala AOLP i metody' ego opredeleniya // Foton-E'kspress. 2006. № 6, oktyabr' (specz. vy'p.). S. 78−90.
  3. Zhu K., Zhou G., Li X., Zheng X., Tang H. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere // Opt. Express. 2008. V. 16. № 26. R. 21315-21320. 
  4. Gbur G., Wolf S. Spreading of partially coherent beams in random media // J. Opt. Soc. Am. A. 2002. V. 19. P.1592(1598.
  5. Kaicheng Zhu, Shaoxin Li, Ying Tang, Yan Yu, and Huiqin Tang Study on the propaga tion parameters of Bessel-Gaussian beams carring optical vortices through atmospheric turbulence // J. Opt. Soc. Am. A. 2012. V. 29. Is. 3. P. 251-257.
  6. Kuzyakov B.A., Kirillova Ju.A. Oczenki dispersii fluktuaczii intensivnosti lazerny'x puchkov v turbulentnoj atmosfere // Sb. nauch. trudov II Vseross. konf. po fotonike i informaczionnoj optike. M. 2013. C. 211-212.
  7. Mahdieh M. Numerical approach to laser beam propagation through turbulent atmosphere and evaluation of beam quality factor // Opt. Commun. 2008. V. 281. P. 3395-3402.
  8. Banax V.A., Belov V.V., Zemlyanov A.A. Rasprostranenie opticheskix voln v neodnorodny'x, sluchajny'x, nelinejny'x  sredax. Tomsk: IOA SO RAN. 2012. C. 402.
  9. Aksenov V.P., Banax V.A., Valuev V.V. i dr. Moshhny'e lazerny'e puchki v sluchajno neodnorodnoj atmosfere. Novosibirsk: SO RAN. 1998. C. 341.
  10. Banax V.A., Smalixo I.N., Falicz A.V. E'ffektivnost' metoda subgarmonik v zadachax komp'yuternogo modelirovaniya rasprostraneniya lazerny'x puchkov v turbulentnoj atmosfere // Optika atmosfery' i okeana. 2011. T. 24. № 10. C. 848-850.
  11. Mei Z., Korotkova O. Electromagnetic cosin-Gaussian Schell-model beams in free space and atmospheric turbulence // Opt. Express. 2013. V. 21. № 22. P. 27246-27259.
  12. Kuzyakov B.A., Subbotin R.V., Xarchevskij A.A. Osobennosti oczenki dispersii fluktuaczii intensivnosti na osi lazernogo puchka v turbulentnoj atmosfere // Sb. trudov 61-j NTK MIRE'A. M. 2012. Ch. 2. C. 49(54.
  13. S.M. Zhao, J. Leach, L.Y. Gong, J.Ding, and B.Y. Zheng Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states // Optics Express. 2012. V. 20. Is. 1. P. 452(461.
  14. Jorg B. G¨otte1, Kevin O-Holleran1, Daryl Preece1, Florian Flossmann1, Sonja Franke-Arnold1, Stephen M. Barnett2 and Miles J. Padgett1 Light beams with fractional orbital angular momentum and their vortex structure // Optics Express. 2008. V. 16. Is.2. P. 993.
  15. Sanchez D.J., Oesch D.W. Localization of angular momentum in optical waves propagating through turbulence // Optics Express. 2011. V. 19. Is. 25. P. 25388-25396.
  16. Gibson G. Free-space information transfer using light beams carring orbital angular momentum // Optics Express. 2004. V. 12. Is. 22. P. 5448-5456.
  17. O-Dwyer D.P., Phelan C.F., Rakovich Y.P., Eastham P.R., Lunney J.G., Donegan J.F. Generation of continuously tunable fractional optical orbital angular momentum using internal conical diffraction // Optics Express. 2008. V.18. Is. 16. P. 16480-16485.   
  18. Zhu Cr.W., She W. Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial // Optics Express. 2012. V. 20. Is. 23. P. 25876-83.
  19. Manipulation of dark photonic angular momentum states via magneto-optical effect for tunabke slow-light performance // Optics Express. 2013. V. 21. Is. 21. P. 25035-25044.
  20. Karpov M.A., Egorova E.V.. Barskij D.R., Nefedov V.I. Razrabotka pikosekundnogo vremya analiziruyushhego e'lektronno-opticheskogo preobrazovatelya dlya biofluresczentny'x issledovatelej // Nelinejny'j mir. 2012. T. 10. № 1.