350 rub
Journal Electromagnetic Waves and Electronic Systems №11 for 2013 г.
Article in number:
Longitudinal space charge waves in tape relativistic electron beams in crossed electric and magnetic fields
Authors:
P.D. Kravchenya  Post-graduant Student, Department of Physics Volgograd State Technical University (VSTU)
A.G. Shein  D.Sc. (Phys.-Math.), Professor, Department of Physics Volgograd State Technical University (VSTU)
Abstract:
Because of relativistic electron beams are the oscillatory system which can provide the powerful electromagnetic waves generation and amplification under the certain conditions the investigation of the different wave phenomena in them is an important scientific and technical problem. The relativistic beams moving in the crossed fields are of particular interest. The theoretical analysis in this paper is performed for the slim tape relativistic electron beams moving in the crossed fields. The laminar beams with space charge and self-magnetic field which are speed-modulated by the external high frequency signal are considered. The joint solving of both the charged beam particle movement equation and Maxwell equations in the small signal and the little beam height approximations are in the basis of the theory. All the variables dependencies on the time and longitudinal coordinate are supposed to be harmonic to bring all of differential equations to algebraic. The result of this analysis is the dispersive equation relating charge waves propagation constants with the speed of a beam, the frequency of its speed modulation, the space charge and the external magnetic field. It is an algebraic equation of the sixth order having four real and two complex conjugate roots at low beam current, weak fields in the interaction space and modulation frequency more then plasmic one. The paper examines the only real solutions of the dispersion equation. They correspond to two longitudinal space charge waves and two excitation electromagnetic waves. One space charge wave is fast and one is slow. Spreading in the beam they lead to the appearance of speed spatial beats which are confirmed by the numerical beam simulation. The fact of all theoretically predicted waves excitation in the experimental beams is confirmed by the spectral analysis of the dependence of the average particles speed in the beam cross section on the longitudinal coordinate.
Pages: 39-45
References

  1. Musumeci P., Li R. K., Marinelli A. Nonlinear longitudinal space charge oscillations in relativistic electron beams // Physical Review Letters. 2011. V. 106, № 18. P. 184801. doi:10.1103/Phys.Rev.Lett.106.184801
  2. Krasnova G. M. K dvumernoj linejnoj teorii vzaimodejstviya e'lektronnogo potoka s begushhej e'lektromagnitnoj volnoj: uchet vliyaniya prostranstvennogo zaryada v modeli tonkogo puchka // Izvestiya vuzov. Prikladnaya nelinejnaya dinamika. 2010. T. 18. Vy'p. 5. S. 151-160.
  3. Saberi H., Maraghechi B. Influence of self-fields on electrostatic waves in a relativistic electron beam with axial magnetic field // Plasma Physics and Controlled Fusion. 2009. V. 51. № 5. P. 055011. doi:10.1088/0741-3335/51/5/055011
  4. Slepkov A. I., Gallyamova O. V. Osobennosti mnogovolnovogo vzaimodejstviya e'lektronnogo potoka i e'lektromagnitnogo polya v relyativistskom difrakczionnom generatore // Vestnik Moskovskogo universiteta. Ser. 3. Fizika. Astronomiya. 2009. Vy'p. 4. S. 30-34.
  5. Brainerd A. E., Chen C., Zhou J. Space-charge waves on relativistic elliptic electron beams // Journal of Applied Physics. 2009. V. 106, № 2. P. 023310. doi:10.1063/1.3184424
  6. Bush I. A., Robinson A. P. L., Kingham R., Pasley J. Cavitation and shock wave formation in dense plasmas by relativistic electron beams // Plasma Physics and Controlled Fusion. 2010. V. 52. № 12. P. 125007. doi:10.1088/0741-3335/52/12/125007
  7. Mirzanejhad S., Maraghechi B., Sohbatzadeh F., Kamel-Jahromi I. Space-charge waves in a relativistic electron beam with ion-channel guiding // Journal of Plasma Physics. 2011. V. 77. № 3. P. 419-429. doi:10.1017/S0022377810000632
  8. Abdoli-Arani A., Jazi B. Effect of relativistic elliptical beam modulation on excitation of surface plasma waves in a magnetized dusty plasma column with elliptical cross section // Waves in Random and Complex Media. 2013. V. 23. № 2. P. 114-127. doi:10.1080/17455030.2013.779763
  9. Riyopoulos S. Nonlinear theory of a high efficiency ExB drifting electron laser // Physics of Plasmas. 1996. V. 3. № 10. P. 3828-3852. doi:10.1063/1.871515
  10. Riyopoulos S. Small signal theory of an ExB drifting electron laser // Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics. 1997. V. 55. № 2. P. 1876-1886. doi:10.1103/PhysRevE.55.1876
  11. Brillouin L. Theory of the Magnetron. I // Physical Review. 1941. V. 60. № 5. P. 385-396. doi:10.1103/PhysRev.60.385
  12. Stal'maxov V. S. Osnovy' e'lektroniki sverxvy'sokochastotny'x priborov so skreshhenny'mi polyami. M.: Sovetskoe radio, 1963.
  13. Shevchik V. N., Shvedov G. N., Soboleva A. V. Volnovy'e i kolebatel'ny'e yavleniya v e'lektronny'x potokax na sverxvy'sokix chastotax. Saratov: Izd. Saratovskogo un-ta. 1962.
  14.  Svid. o gos. registraczii programmy' dlya E'VM № 2013613558 ot 10 aprelya 2013 g. RF. Programma rascheta dinamiki potoka relyativistskix chasticz / P. D. Kravchenya, D. G. Kovtun, A. G. Shein; opubl. 20.06.2013, Byul. № 2. 1 s.
  15. Xokni R., Istvud Dzh. Chislennoe modelirovanie metodom chasticz. M.: Mir. 1987.
  16. Landau L. D., Lifshicz E. M. Teoriya polya. Izd. 7-e. - M.: Nauka. Fizmatlit. 1988. T. 2.
  17. Kovtun D. G., Shein A. G., Nasachev A. G. Osobennosti modelirovaniya povedeniya relyativistskogo e'lektronnogo potoka v skreshhenny'x polyax // Radiotexnika i e'lektronika, 2005. T. 50. Vy'p. 1. S. 114-118.