350 rub
Journal Electromagnetic Waves and Electronic Systems №8 for 2012 г.
Article in number:
Thermal field in termoparametric material heated in the conveying unit based on the type of waveguides of complex cross section
Authors:
V.A. Kolomejcev, A.E. Semenov, D.N. Nikuiko
Abstract:
The higher value of broadband coefficient, the presence of a high concentration area and uniformity of the electric field in the gap capacity, smaller cross-sectional dimensions at a given operational wavelength of waveguides of complex cross-sections (WCCS - rectangular waveguide with a T-edge, П- and H-waveguides, etc.) compared with standard waveguides (rectangular waveguide, a cylindrical waveguide, etc.) based on the WCCS can create a new class of highly efficient, compact microwave systems such as conveyor providing uniform dielectric materials heating, including materials, electrical and thermal parameters of which depend on heating temperature (termoparametric materials). Calculation of the working chamber design, that provides uniform heating of moving sheet material to the nature of the change of the electrophysical and thermal parameters in the heat treatment process, is based on solving the inner joint boundary problem of electrodynamics and thermal conductivity (IBPETC). This is rather difficult task because of the nonlinearity and coherence of the Helmholtz wave equation and equation of heat conduction, as well as due to the fact, that the termophysical and electrophysical parameters of the treated material included in IBPETC as a given parameters, and their dependence on the heating temperature is determined experimentally, that excludes analytical solution of the desired problem. In this paper we suggest a self-consistent approach in dealing with IBPETC to chambers on the basis of WCCS, partly filled with termoparametric material, which is located in the center of the capacitive gap of TWTE and moves in a direction perpendicular to the direction of wave propagation (conveying unit of cross type). The suggested approach is based on the method of successive iterations of the heat source function at a given temperature range in which at each iteration the range of electrical and thermal parameters are constant and equal to the average value of the desired parameters at each iteration interval. The suggested approach solutions allowed us to determine the thermal field in the medium in their direction of its movement, which is not linear, and allowed us to determine the main characteristics of the power engineering of heat treatment process.
Pages: 39-44
References
  1. Коломейцев В.А., Железняк А.Р., Бабак В.В. Оперативная математическая модель процесса взаимодействия электромагнитных волн с термопараметрическими материалами // Электродинамические устройства и линии передачи СВЧ: межвуз. науч. сб. Саратов: СГТУ. 2001. С. 52-59.
  2. Коломейцев В.А., Яковлев В.В. Расчет электромагнитных полей рабочей камеры СВЧ нагревательной установки на П-волноводе // Радиотехника. 1987. № 9.С. 65-66.
  3. Коломейцев В.А., Яковлев В.В. Диапазонные свойства установок СВЧ нагрева темопараметрических материалов на волноводах сложных сечений // Радиотехника. 1991. № 12. С. 66-69.
  4. Metaxas A.C., Meredith R.I. Industrial microwave heating. London: Peter Peregrimus Publishing. 1986.
  5. Исаченко В. П., Осипова В. А., Сухомел А. С. Теплопередача. М.: Энергия. 1975.
  6. Кутателадзе С. С., Боришанский В. М. Справочник по теплопередаче. М.: Госэнергоиздат. 1959.
  7. Коломейцев В.А., Яковлев В.В. Синтез прямоугольного волновода с Т-ребром // Изв. вузов. Сер. Радиоэлектроника. 1983. Т. 26. № 1. С. 85-87.
  8. Брандт А.А.Исследование диэлектриков на сверхвысоких частотах. М.: Физматиздат. 1963.
  9. Хиппель А. Диэлектрики и их применение. М.: Госэнергоиздат. 1959.