350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2012 г.
Article in number:
Real-time video hand recognition using SURF descriptors and neural network
Authors:
T.T. Nguyen, V.G. Spitsyn
Abstract:
In the recent years hand recognition has attracted interest of many researchers. Different algorithms and methods have been proposed to archive high accurate and robust recognition of hand and gestures. This paper proposes a new algorithm for solving the hand recognition problem using the SURF features and neural network. Since introduction, SURF (Speeded-up Robust Feature) has gained its popularity in image categorization, image indexing and retrieval for its robustness and performance. However, in object recognition (and hand recognition particularly) SURF features cannot be used directly in neural network (or other classifiers) for its variability in length. In this paper a new method for creating descriptors for neural network classifier based on SURF is introduced. The extracted SURF features are clustered using K-means clustering to create a "vocabulary" of visual words. The SURF feature set extracted from an image is then compared with the vocabulary as a look-up table to choose appropriate visual words that correctly describe the image SURF feature set. A histogram of occurred words in that image is built and will be used as the input image descriptor for recognition in a multilayer neural network with back-propagation. The experiments have proved that the proposed algorithm can work well in real time at the processing speed of 15 frames per second with average accuracy of 92%. Based on the proposed algorithm a program packet for real-time video hand recognition has been built and introduced.
Pages: 31-39
References
  1. Zhou H., Huang T.S. Tracking articulated hand motion with Eigen dynamics analysis // Proc. of International Conference on Computer Vision. Nice (France). 2003. V. 2. P. 1102-1109.
  2. Chen F., Fu C., Huang C. Hand gesture recognition using a real-time tracking method and Hidden Markov Models // Image and Vision Computing. Oxford: Elsevier. 2003. V. 21.№ 8. P. 745-758.
  3. Ng C.W., Ranganath S. Gesture recognition via pose classification // Proc. 15th International Conference on Pattern Recognition. Barcelona (Spain). 2000. V. 3. P. 699-704.
  4. Oka K., Sato Y., Koike H. Real-time fingertip tracking and gesture recognition // IEEE Computer Graphics and Applications.Washington DC : IEEE Society. 2002. V. 22. №6. P. 64-71.
  5. Huang C., Jeng S. A model-based hand gesture recognition system // Machine Vision and Application. SpringerLink. 2001. V. 12. №5. P. 243-258.
  6. Нгуен Т.Т. Алгоритмическое и программное обеспечение для распознавания фигур с помощью фурье-дескрипторов и нейронной сети // Известия Томского политехнического университета (Томск: Изд-во ТПУ) 2010. Т. 317. №5. С. 122-125.
  7. Harris C., Stephens M. A combined corner and edge detector // Proceedings of the Alvey Vision Conference. 1988. P. 147-151.
  8. Lindeberg T. Feature Detection with Automatic Scale Selection // International Journal of Computer Vision.SpringerLink. 1998. V. 30. №2. P. 79-116.
  9. Mikolajczyk K., Schmid C. Indexing based on scale invariant interest points // Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001). Washington DC : IEEE Society. 2001.V. 1.P. 525-531.
  10. Lowe D. Object Recognition from Local Scale-Invariant Features // Proc. of the International Conference on Computer Vision ICCV, Corfu (Greece) 1999. WashingtonDC : IEEE Society. 1999.P. 1150-1157.
  11. Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool. SURF: Speeded Up Robust Features // Computer Vision and Image Understanding. Oxford: Elsevier. 2008.V. 110. №3.P. 346-359.
  12. Florack L.M.J., Haar Romeny B.M.t., Koenderink J.J., Viergever M.A. General intensity transformations and differential invariants // Journal of Mathematical Imaging and Vision.  SpringerLink. 1998.V. 4.№2.P. 171-187.
  13. Mindru F., Tuytelaars T., Van Gool L., Moons T. Moment invariants for recognition under changing viewpoint and illumination // Computer Vision and Image Understanding. Oxford: Elsevier. 2004.V. 94. №1.P. 3-27.
  14. Baumberg A. Reliable feature matching across widely separated views // IEEE Conference on In Computer Vision and Pattern Recognition, Hilton Head (SC, USA) 2000. Washington DC: IEEE Society. 2000.V. 1.P. 774-781.
  15. Schaffalitzky F., Zisserman A. Multi-view matching for unordered image sets, or - How do I organize my holiday snaps?? // Proceedings of the 7th European Conference on Computer Vision-Part I, Copenhagen (Denmark) 2002. London: Springer-Verlag. 2002.V. 1.P. 414-431.
  16. Freeman W.T., Adelson E.H. The design and use of steerable filters // Pattern Analysis and Machine Intelligence. Washington DC: IEEE Society. 1991.V. 13. №9.P. 891-906.
  17. Carneiro G., Jepson A. Multi-scale phase-based local features // Proceedings. 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE Society. 2003.V. 1.P. 736-743.
  18. Mikolajczyk K., Schmid C. A performance evaluation of local descriptors // IEEE Transactions on Pattern Analysis and Machine Intelligence. Washington DC: IEEE Society. 2005.V. 27. №10.P. 1615-1630.
  19. Mikolajczyk K., Tuytelaars T., Schmid C., Zisserman A., Matas J., Schaffalitzky F., Kadir T., Van Gool L. A comparison of affine region detectors // International Journal of Computer Vision. SpringerLink. 2005. V. 65. №1. P. 43-72.
  20. Dardas N.H., Georganas N.D. Realtime hand gesture detection and recognition using bag-of-features and support vector machine techniques // IEEE Transactions on Instrumentation and Measurement. Washington DC: IEEE Society. 2011.V. 60. №11.P. 3592-3606.
  21. Juan L., Gwun O. A comparison of SIFT, PCA-SIFT and SURF // Int. J. Image Process. (IJIP). Malaysia: CSC Journals. 2009.V. 9. №4.P. 143-152.