350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2012 г.
Article in number:
Modeling the effects of radiation friction in the dynamics of relativistic laser-plasma
Authors:
V.K. Kramarenko, A.V. Panchenko, A.P. Mikhajlov, N.S. Knyazev, A.V. Pereverzeva, S.N. Gorbach, L.A. Makarevich, K.Ju. Taletsky, F.F. Kamenets, T.Zh. Esirkepov, S.V. Bulanov
Abstract:
The question on radiation losses in the charged particles motion attracts the attention of researchers in more than one hundred years. Radiation friction affects strongly on the dynamics of the plasma interacting with light starting from intensity over 1023 W/sm2. The ultrahigh intensity radiation with matter interaction processes with the radiation friction force (RF) taken into account has been discussed in various applications. There is persistent interest towards this problem. On the basis of the code REMP, allowing to carry out a two-dimensional numerical simulation of the interaction of radiation with matter, has been implemented the method of accounting the effect of RF as a small correction to the Lorentz force. In this method, the first step of the Lorentz force is calculated, and the RF is entered as a small correction in the second step. Thus the action of Lorentz force and the RF are described by different numerical operators. For comparison with known results we have carried out test experiments on ion acceleration in the radiation-dominant mode of interaction of a laser pulse with the foil of the supercritical concentration. And we have observed the coincidence with the results of other research groups. The results have showed that with accounting frictional force, as predicted in the article, volume occupied by the particles of the phase space compress and, as noted in the article, changes of the final energy of particles are small. Compression phase volume is explained the fact that RFF plays cooling mechanism that takes into account the emission of high-energy photons. These photons emerge freely from the plasma, taking with them some part of the energy, momentum and entropy. Also we compared the effect of RFF on the process of acceleration of the various particles. Experiments were carried out with mass-limited targets. We studied the interaction of circularly polarized pulses with different forms of the envelope. Compression of the ion beam can be clearly seen in the diagrams of the particle distribution under the angle dispersion. Comparison of the results suggests a more efficient focusing of the ion beam. Decrease the effectiveness of the expansion increases the number of accelerated particles in the radiated zone. Thus, taking into account high-frequency component of RFF leads to a decrease in the efficiency of ion acceleration.
Pages: 16-24
References
  1. Jackson J. D. Classical Electrodynamics. New York: John Willey and Sons, 1999.
  2. Ландау. Л. Д., Лифшиц Е. М.Теория поля. М.: ФИЗМАТЛИТ. 2003.
  3. Barut A. O. Electrodynamics and classical theory of fields and particles. New York: Dover, 1980.
  4. Ginzburg V. L. Applications of Electrodynamics in Theoretical Physics and Astrophysics. New York: Gordon and Breach, 1989.
  5. Iwanenko D. and Pomeranchuk I.On the maximal energy attainable in betatron // Phys. Rev. 1944. V. 65. P. 343 - 353.
  6. Bruck H. Circular particle accelerators. Los Alamos: Los Alamos Lab, 1974.
  7. Berezinskii V. S., Bulanov S. V., Dogiel V. A., Ginzburg V. L. and Ptuskin V. S.Astrophysics of Cosmic Rays. - Amsterdam: Elsevier, 1990.
  8. Bulanov S. V., Esirkepov T. Zh., Habs D., Pegoraro F., Tajima T.Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics // Eur. Phys. J. D. 2009. V. 55. P.483-486.
  9. Min Chen Radiation reaction effects on ion acceleration in laser foil interaction// Plasma Phys. Control. Fusion. 2011. V.53. P. 104 - 120.
  10. Бэдсел Ч., Ленгдон А. Физика Плазмы и численное моделирование: пер. с англ. М.: Энегроатомиздат. 1989.
  11. Хокни Р., Иствуд Дж. Численное моделирование методом частиц: пер с англ. М.:Мир. 1987.
  12. Birdsall C. K. Particle-in-Cell Charged-Particle Simulations Plus Monte Carlo Collisions With Neutral Atoms // PIC-MCC, IEEE Trans. Plas. 1991. V. 19. P. 65-85.
  13. Hazeltine R. D. and Mahajan S. M. Radiation reaction in fusion plasmas // Phys Rev E Stat Nonlin Soft Matter Phys. Oct. 2004. V. 70. P. 407-419.
  14. Bulanov S. V., Esirkepov T. Zh., Kando M., Koga J. K., Bulanov S. S.Lorentz-Abraham-Dirac vs Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions) // Phys. Rev. E. 2011. V. 84.Р. 605-610.
  15. Tamburini M. Radiation reaction effects on radiation pressure acceleration// New J. Phys. 2010. V.12. P. 123 - 132.
  16. Tamburini M., Pegoraro F., Di Piazza A., Keitel C. H., Liseykina T. V., Macchi A. Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser-solid interaction // Nuc. Inst. Meth. Phys. Res. A. 2010. V. 5. P. 456-465.
  17. Campos M. Pinto and Mehrenberger M. Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system. Numerische Mathematik108. 2008. Р. 407-444.
  18. Banks J. W., Hittinger J. A. F. A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation // IEEE Trans. Plas. 2010. V. 38. P. 2198 - 2207.
  19. Cangellaris A. C.Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides // IEEE Microwave and Guided Wave Letters. 1993. V. 3. P.105-120.
  20. Esirkepov T. Zh. Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor // Computer Physics Communications. 2001. V. 135. № 2. P. 144-153.
  21. Particle In Cell Method A brief description of the PIC Method. Giovanni Lapenta Centrum voor Plasma AstrofysicaKatholieke Universiteit Leuven. 2009.
  22. Власов А. А. О вибрационных свойствах электронного газа // ЖЭТФ. 1938.Т.3.С. 291?300.
  23. Bunemann O. Time reversible difference procedures // J. Comp. Phys. 1967. V. 1. P. 517-535.
  24. Boris J. P. Relativistic plasma simulation - optimization of a hybrid code //Proc. 4th Conf. on Num. Sim. of Plasmas, Office of Naval Research. 1970. Arlington. Va. P. 3-67.
  25. Yee K. S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media // IEEE Trans. Antennas Prop. 1966. V. 14. P. 302-313.
  26. Juntunen J. S., Tsiboukis T. D. Reduction of numerical dispersion in FDTD method through artificial anisotropy // IEEE Transactions on Microwave Theory and Techniques. 2000. V. 48. P. 582 - 588.
  27. Брантов А. В., Быченков В. Ю. Физика плазмы. М.: ФИЗМАТЛИТ. 2010.
  28. Bulanov S. V., Echkina E. Yu., Esirkepov T. Zh., Inovenkov I. N., Kando M., Pegoraro F. and Korn G. Unlimited ion acceleration by Radiation Pressure // Phys. Rev. Lett. 2010. V. 104. P. 135-140.