350 rub
Journal Electromagnetic Waves and Electronic Systems №11 for 2012 г.
Article in number:
Solving diffraction problems by parabolic equation method
Authors:
V.V. Akhiyarov
Abstract:
In this paper the diffraction problems solution using parabolic equation (PE) is considered. Mathematically rigorous transition from Helmholtz equation to the parabolic equation and forward propagation is presented. Two ways of the differential operator approximation are produced; also various ways of the terrain representation and corresponding PE are shown. It is obtained that the staircase terrain approximation gives the results, completely corresponding with analytical solutions. An algorithm for the diffraction problems numerical solution, taking into account backward scattering, is produced. For the wedge diffraction problem it is shown that if the terrain is very rough, one should consider the backward scattering. The algorithm, taking into account backscattering, provides an opportunity to solve scalar diffraction problem for the arbitrary cross-section cylinder with Dirichlet boundary conditions. In free space PE has an analytical solution and so it gives possibility for the reflection suppressing from the computational domain boundaries into perfectly-matched layer. The real part of the scattered field for the circular and square cross sections cylinders is shown. RCS calculation method based on near field integration technique shows that the RCS in forward direction agrees with integral equation method.
Pages: 24-30
References
  1. Власов С.Н., Таланов В.И. Параболическое уравнение в теории распространения волн (к 50-ти летию первой публикации) // Известия вузов. Сер. Радиофизика. 1995. Т. XXXVIII. № 1-2. С. 3-19.
  2. Levy М.F. Parabolic equation method for electromagnetic wave propagation. London. IEE. 2000.
  3. Levy M. Perfectly matched layer truncation for parabolic wave equation models // Proc. the Royal Society. 2001. P. 2609-2624.
  4. Barrios A.E. A terrain parabolic equation model for propagation in the troposphere // IEEE Trans. 1994. V. AP-42. № 1. P. 90-98.
  5. Ахияров В.В. Метод параболического уравнения в теории дифракции // Успехи современной радиоэлектроники. 2010. № 9.  С. 72-80.
  6. Ахияров В.В. Вычисление множителя ослабления над земной поверхностью методом параболического уравнения // Журнал радиоэлектроники. 2012. № 1. http://jre.cplire.ru/jre/jan12/16/text.pdf.
  7. Ахияров В.В., Чернавский С.В. Использование численных методов для изучения условий распространения радиоволн //
    Радиотехника. 2011. № 10. С. 101-110.
  8. Zaporozhets A.A., Levy M.F. Bistatic RCS calculations with the vector parabolic equation method // IEEE Trans. 1999. V. AP-47.
    № 11. P. 1688-1696.
  9. Ozgun O.Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation // IEEE Trans. 2009. V. AP-57. № 9. P. 2706-2714.