350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2012 г.
Article in number:
Colored background symbols recognition on the base of hierarchical temporal memory with Gabor filter preprocessing
Authors:
Yu. A. Bolotova, A. K. Kermani, V. G. Spitsyn
Abstract:
Authors designed 2-levels network based on hierarchical temporal model for object recognition task. The network was approved on printed and handwritten symbols on monochrome and colored background recognition. Initial pictures were preprocessed by Gabor filter. Filter parameters were obtained experimentally. Two ways of forming the input data for the network were designed. The way of taking into account different orientations leads to better recognition results.
The experiment was held on 2 samples of pictures. The first sample consists of 40 categories of printed pictures on a white background for train and on colored background for test. The size of pictures is 32×32 pixels. Train subsample contains 122 pictures. Test subsamples are presented by 192 initial pictures and 1077 randomly shifted pictures. The second sample represents MNIST database of handwritten digits (10 categories). The train sample-s size is 60000 pictures and the test sample-s size is 10000 pictures size of 29×29 pixels.
In the current work the influence of modeled saccadic movements on the recognition result was also investigated. The recognition results of the network trained on video sequences is better than the network trained on separate pictures. Finally, parallelization of main functions of the system speeds up the processes of training and testing.
Pages: 14-19
References
- Hawkins J., Blakeslee S. On Intelligence. N.Y.: Times Books, 2004.
- Hawkins J., George D. Temporal Memory Concepts, Theory, and Terminology // http://www.numenta.com: сайткомпанииНумента. 2006. URL: http://numenta.com/htm-overview/education/Numenta_HTM_Concepts.pdf(дата обращения 10.10.2011).
- George D., Jaros B. The HTM Learning Algorithms // http://www.numenta.com: сайткомпанииНумента. 2006. URL: http://numenta.com/htm-overview/education/ Numenta_HTM_Learning_Algos.pdf (дата обращения: 14.11.2010).
- Болотова Ю. А., Фомин А. Э., Спицын В. Г.Применение модели иерархической временной памяти в распознавании изображения // Известия Томского политехнического ун-а. 2011. Т. 318. № 5. С. 60 - 63 (16848519).
- Болотова Ю. А., Спицын В. Г. , Фомин А. Э. Анализ и оптимизация модели HTM для распознавания цифр // Сб. трудов XVII Междунар. симпозиума «Оптика атмосферы и океана. Физика атмосферы»: [Электронный ресурс]. Томск: Изд-во ИОА СО РАН. 2011. С. F46 - F50.
- Болотова Ю. А., Спицын В. Г.Применение модели память-предсказание для задачи распознавания образов // Проблемы информатики (Спецвыпуск). 2011. С. 129 - 135.
- LecunY., CortesC.TheMNISTdatabaseofhandwrittendigits [электронный ресурс] URL: http://yann.lecun.com/exdb/mnist/ (дата обращения 23.11.11).
- Кермани А. К., Спицын В. Г., Хамкер Ф. Нахождение параметров и удаление постоянной составляющей фильтра Габора для обработки изображений // Известия Томского политехнического университета. 2011. Т.318. №5 С. 57 - 59 (16848519).
- Dayan P., Abbot L. F. Theoretical Neuroscience: Computational and Mathematica Modeling of Neural Systems. Cambridge: MIT Press. 2001.
- Саккада // www.wikipedia.org: сайт Википедии. URL: http://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D0%BA%D0%BA%D0%B0%D0%B4%D0%B0 (дата обращения 12.10.11)/
- Александров Ю. И. Основы психофизиологии: Учебник / отв. ред. Ю. И. Александров. М.: ИНФРА-М, 1997.
- Freeman A. Pro .NET 4 Parallel Programming in C#. N.Y.: Apress, 2010.