350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2011 г.
Article in number:
Diffraction of Electromagnetic Waves of Optical Frequency on the Nanovibrator Lying at the Boundary Between Dielectrics
Keywords:
optical antennas
antennas of optical frequency range
complex dielectric permittivity
integral equations
Galerkin method
collocation method
resonance
scattering diagram
directional pattern
Authors:
E. V. Golovacheva, A. M. Lerer, P. V. Makhno, G. P. Sinyavskiy
Abstract:
The solution of two dimensional intego-differential equation, which describes the diffraction of electromagnetic waves on metallic nanovibrators lying at the boundary between dielectrics an on nanocrystalls, coated with metallic film, was obtained. Integro-differential equations (IDE) were solved by means of method, which combines Galerkin and collocation methods. The matrix elements in obtained systems of linear algebraic equations (SLAE) are expressed in the form of Fourier integrals. Such expression of kernels and matrix elements allows to easily overcome difficulties, associated to singularity of IDE's kernels. Rapid internal convergence of solution is shown. The properties of copper nanoantennas on the ZnO substrate were theoretically investigated in optical frequency range. It is mentioned that the dependency of scattered field on frequency shows resonant character, and resonance wavelengths are almost independent on dielectric constant of substrate.
Pages: 9-14
References
- Bharadwaj, P., Deutsch , B. and Novotny, L., Optical Antennas Advances in Optics and Photonics. 2009. V.1. P. 438-483.
- Rutherglen, C. and Burke, P., Nanoelectromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes. small 2009. V. 5. № 8. Р. 884-906.
- Li, J., Salandrino, Al. and Engheta,N., Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain BPHYSICAL REVIEW B 2007. V. 76.Р. 245403(1-7).
- Kempa, K., Rybczynski, J.et al. Carbon Nanotubes as Optical Antennae Adv. Mater. 2007. V. 19. P. 421-426.
- Huang, J. S, Feichtner, T., Biagioni, P., Hecht, B., Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit Nano Lett. 2009. V. 9. № 5. P. 1897-1902.
- Zuev, V. S. and G. Zueva,Ya., Nanodipoles for an optical phased array J. of Russian Laser Research. 2007. V. 28. № 3. P. 272-278.
- Li, J., Engheta,N.,Core-Shell Nanowire Optical Antennas Fed by Slab Waveguides // IEEE Trans. on Anten. and Prop. 2007. V. 55. № 11. Р. 3018-3026.
- Kern, M., Martin,J. F., Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures J. Opt. Soc. Am. 2009. V. 26. № 4. Р. 732-740.
- Головачeва Е. В., Лерер А. М., ПархоменкоН. Г. Дифракция электромагнитных волн оптического диапазона на металлическом нановибраторе. ВМУ. Сер. 3. Физика. Астрономия. 2011. № 1. C. 6-11.
- Лерер А. М.Радиопередающие свойства углеродной нанотрубки - вибратора, расположенной на границе раздела диэлектриков // Вестник МГУ. Сер. 3. 2010. №5. С.43-49.
- http://www.luxpop.com
- Хижняк Н. Г. Интегральные уравнения макроскопической электродинамики. Киев: Наукова думка. 1986.