350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2011 г.
Article in number:
Solution оf Correlation Spectroscopy Inverse Proble Using the Static Light Scattering Data
Authors:
Y.G. Gladush, S.V. Korneev, V.B. Lopatko, A.G. Novoselov, E.B. Perminov
Abstract:
The algorithm which improve the size determination accuracy for multimodal narrow distributions of spherical particles by the dynamic light scattering method was suggested. Our algorithm, based on a non-linear regression and static light scattering methods, use the following a priori information: the form of the distribution and the dielectric constants of the particles. Levenberg-Marquardt (LM) nonlinear regression is used to fit an experimental autocorrelation function and allows to find a local minimum in the space of free parameters, which depend on the characteristics of the particles, a incident radiation and the number of scatters. When the number of free parameters is large a process of the fitting becomes incorrect. Using the static light scattering data, we suggest the modified method of nonlinear regression to improve the problem. By the methods of the static light scattering we calculate the ratio between intensities at the different angles for each local minimum. Using theoretical and observed mean intensities we set the weight that determine whether this is the best approximation to the experimental data in comparison with other equivalent local minimums. For two size particles distribution we show that our method improves the problem of size determination.
Pages: 61-66
References
  1. Merkus H.G. Particle Size Measurements: Fundamentals, Practice, Quality // Berlin: Springer. 2009.
  2. Berne B., Pecora R. Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics // Courier Dover Publications. 2000.
  3. Aragon S. R., Pecora R. Theory of dynamic light scattering from large anisotropic particles // J. Chem. Phys. 1977. V. 66. P. 2506-2517.
  4. Filella M., Zhang J.W., Newman M.E., Buffle J. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: Capabilities and limitations // Colloids and surfaces a - physicochemical and engineering aspects. 1997. V. 120. Issue 1-3. P. 27-46.
  5. Dahneke B.E. Measurement of suspended particles by quasi-elastic light scattering // N.-Y.:Wiley. 1983.
  6. Frisken B.J. Revisiting the method of cumulants for the analysis of dynamic light-scattering data // Applied Optics. 2001. V.40. Issue 24. P. 4087-4091.
  7. Provencher S.W.  Contin - a general-purpose constrained regularization program for inverting noisy linear algebraic and integral-equations // Comput. Phys. Commun. 1982. V.27. Issue 3. P. 229-242.
  8. The CONTIN program is freely available on Steven Provencher's website: http://s-provencher.com/pages/contin.shtml
  9. Tsunashima Yo., Nemoto N., Kurata M. Dynamics light-scattering-studies of polymer-solutions. Histogram analysis of internal motions // Macromolecules. 1983. V.16. Issue 4.  P. 584-589.
  10. Schärtl W.  Light Scattering from Polymer Solutions and Nanoparticle Dispersions // Springer. Springer-Verlag Berlin Heidelberg. 2007.
  11. Xu R. Particle Characterization: Light Scattering Methods  (Particle Technology Series) // Dordrecht:Kluwer Academic Publisher. 2002.
  12. Vanhoudt J. and Clauwaert J.  Experimental comparison of fiber receivers and a pinhole receiver for dynamic and static light scattering // Langmuir. 1999. V. 15. Issue 1. P. 44-57.
  13. Kam Z., Rigler R.  Cross-correlation laser scattering // Biophysical Journal. 1982. V. 39. Issue 1. P. 7-13.
  14. Griffin W.G., Pusey  P.N. Anticorrelations in Light Scattered by Nonspherical Particles //  Phys. Rev. Lett. 1979. V. 43. P. 1100-1104.
  15. Brogioli D., Croccolo F., Cassina V., Salerno D., Mantegazza F.  Nano-particle characterization by using Exposure Time Dependent Spectrum and scattering in the near field methods: how to get fast dynamics with low-speed CCD camera // Physics Optics. arXiv:0906.1468v2.
  16. Zakharov P., Bhat S., Schurtenberger P., Scheffold F.  Multiple-scattering suppression in dynamic light scattering based on a digital camera detection scheme // Applied Optics. 2006. V. 45. Issue. 8. P. 1756-1764.
  17. Qu D.N., Dainty J.C.  Polarization dependence of dynamic light-scattering by dense disordered media // Optics Letters. 1988. V 13. Issue 12.  P.1066-1068.
  18. Hoffmann M., Wagner C.S., Harnau L., Wittemann A. 3D Brownian Diffusion of Submicron-Sized Particle Clusters  // ACS Nano. 2009. V. 3. Issue 10. P. 3326-3334.
  19. Г. ван де Хюлст  Рассеяние cвета малыми частицами / пер. с англ.  М.: ИЛ. 1961.
  20. Леонтович М.А. Введение в термодинамику. Статистическая физика. М.: Наука. 1983.