350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2011 г.
Article in number:
The Imaging of Geostationary Spacecrafts Using Large Aperture Tele-scopes for Space Situational Awareness
Authors:
V.P. Aleshin, Yu.Yu. Balega, E.A. Grishin, V.D. Shargorodskii, A.F. Maksimov, V.V. D-yachenko, S.L. Komarinskii, T.V. Malogolovets, D.D. Novgorodtsev
Abstract:
The experiments conducted in the Greater azimuth telescope (SAO RAS) within the bounds of observation of geostationary satellites have shown the potential methods of speckle-interferometry for optical imaging GEOS to Space Situational Awareness, SSA). The resulting sequence of short-exposure speckle images and their subsequent treatment using the Labeyrie method and bispectrum allowed to determine the orientation of solar panels on devices Express AM (AM 2, AM 22). Reconstructed images GEO USA 202 (Orion) was given an opportunity to estimation the shape of the spacecraft and its size. Experiments confirmed the possibility of reaching the diffraction limit (20 milliseconds of arc) by speckle-interferometry for the observation of geostationary satellites.
Pages: 9-17
References
  1. Fourth European Space Weather Week , Brussels, 5-9/11/2007, A European approach toSpace Situational Awareness, Luca del Monte , Security strategy and partnerships development office DG Policy Office European Space Agency. Р.1-18.
  2. Jim Shoemaker, Space Situational Awareness and Mission Protection, http://www.darpa.mil/DARPAtech2005/presentations/space_act/shoemaker.pdf
  3. Amos Conference Abstracts of Technical Papers,2002-2009.
  4. Jefferies Stuart M., Hope Douglas A. Next Generation Image Restoration for Space Situational Awareness //report AFOSR Grant Number: FA9550-06-1-0179. 2009. Р.1-17
  5. Hope. D. A., Jefferies, S. M. and Giebink, C. Imaging Geosynchronous Satellites with the AEOS Telescope // Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 2008, Ed.: S. Ryan. The Maui Economic Development Board. 2008. Р.1-8.
  6. Hope D.A. and Jefferies S.M. A new Fourier constraint for multi-frame blind deconvolution of imagery obtained through strong turbulence // Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii. September 2006. Ed.: S. Ryan. The Maui Economic Development Board. 2006. Р. E26.
  7. Schulze K., Tyler D., Stribling B. Near real-time speckle imaging for optimization of observing parameters.Schafer Corporation. 2000 Randolph Street, Albuquerque, NM 87106, Air Force Research Laboratory, 535 Lipoa Pkwy, Suite 200, Kihei, Maui, HI 96753. Р.1-8.
  8. Schulze K., Tyler D.PARallel Speckle rEonstruction Code (PARSEC) for satellite imaging at the MSSS: algorithms and observational results. 2000. Р.1-22.
  9. Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images // Astronomy and Astrophysics. 1970. V. 6. Р. 85-87.
  10. Lohmann A.W., Weigelt G., Wiritzer B. Speckle masking in astronomy. Triple correlation theory and applications // Applied Optics. 1983. V. 22. Р. 4028-4037.
  11. Bonneau D. and Labeyrie A.Speckle interferometry: color-dependent limb darkening evidenced on alpha. Orionis and omicron Ceti // The Astrophysical Journal. 1973. V. 181. Р. L1-L4.
  12. Labeyrie A., Koechlin L., Bonneau D., Blazit A. and Foy R. // The Astrophysical Journal. 1977. V. 218. Р. L75-L78.
  13. Максимов А.Ф., Балега Ю.Ю., Дьяченко В.В., Малоголовец T.В., Растегаев Д.А., Семерников Е.А. Спекл-интерферометр 6-м телескопа САО РАН на основе EMCCD: характеристики и первые результаты // Астрофизический бюллетень.2009. Т. 64. №3. С. 308-321.
  14. Rastegaev D.A., Balega Yu.Yu., Maksimov A.F., Malogolovets E.V., DyachenkoV.V. Speckle interferometry of metal-poor stars in the solar neighborhood. II // Astrophysical Bulletin.2008. V. 63.Is. 3. Р. 278-289.
  15. Алешин В.П., Афанасьев О.В., Клименко С.В., Лавров В.В., Новгородцев Д.Д., Рындин Ю.Г. Методы компьютерной графики и индуцированного виртуального окружения в задачах обработки некоординатной информации // Вопросы радиоэлектроники. 2007. №4. С. 52-72.