350 rub
Journal Electromagnetic Waves and Electronic Systems №11 for 2011 г.
Article in number:
Absolute Negative Conductivity in Graphene with Electron-Electron Interaction in a Case of Magnetic Field
Authors:
M.B. Belonenko, N.G. Lebedev, N.N. Yanyushkina
Abstract:
In the paper, we studied basic characteristics of the system by the use of average electron method. Current-voltage characteristic and Ampere-Gauss characteristic for graphene with the Hubbard interaction were obtained in a case of low temperatures by the average electron method. Dependence of the obtained characteristics on the frequency of external alternating electromagnetic fields was analyzed, and the regions with an absolute negative conductivity were found. It can be seen that there is a region with an absolute negative conductivity in the current-voltage characteristic, besides ordinary region with a differential negative conductivity, which is peculiar all substances with periodical dispersion law. It should be associated with non-equilibrium state of the system of grapheme electron, at first caused by the strong non-parabolic dispersion law. Also we note that such state will be unstable and will lead to graphene segmentation into domains. A measured macroscopic resistance becomes zero, which makes this state very attractive for practical applications. According to observed data there is a state with zero conductivity, which appears while an amplitude of the alternating electric field increases. We assume that this phenomenon has the same nature as an appearance of the regions with the absolute negative conductivity in the current-voltage characteristic. The obtained results, in addition to the known properties of graphene allow its consideration as one of main alternatives to the silicon basis of modern microelectronics and provide rich possibilities of its practical application.
Pages: 53-56
References
  1. Krömer H. Proposed negative-mass microwave amplifier // Phys. Rev. 1958. V. 109. P. 1856.
  2. Рыжий В.И. Особенности фотопроводимости тонких пленок в скрещенных электрическом и магнитном полях // ФТТ. 1969. V. 11. P. 2577-2579.
  3. Рыжий В.И. Абсолютная отрицательная проводимость, индуцированная микроволновым излучением, и состояния с нулевым сопротивлением в двумерных электронных системах: история и современное состояние // УФН. 2005. V. 175. P. 205-213.
  4. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thiun carbon films // Science. 2004. V. 306. Р. 666-669.
  5. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Firsov A.A. Two-dimensional gas of massles Dirac fermions in graphene // Nature. 2005. V. 438. Р. 197-200.
  6. Belonenko M.B., Demushkina E.V., Lebedev N.G. Electromagnetic soliton in a system of carbon nanotubes // Journal of Russian Laser Research. 2006. V. 27. № 5. P. 457-465.
  7. Hubbard J. Electron correlations in narrow energy bands // Proc. Roy. Soc. A276. 1963. V. 1365. P. 238-257.
  8. Izyumov Yu. A., Letfulov B. M., Shipitsyn E. V., Chao K. A. A theory of ferromagnetism in the Hubbard model with infinite Coulomb interaction // Int. J. Mod. Phys. 1992. V. 6. P. 3479-3514.
  9. Изюмов Ю. А., Кацнельсон М. И., Скрябин Ю. Н.Магнетизм коллективизированных электронов. М.: Физматлит. 1994.
  10. Wallace P.R. The band theory of graphite // Phys. Rev. 1947. V. 71. № 9. P. 622-634.
  11. Эпштейн Э.М. Влияние сильных электромагнитных волн на электронные свойства полупроводников // Изв. вузов. Сер. Радиофизика. 1975. Т.22. С. 785-811.
  12. Бонч-Бруевич В. Л., Калашников С. Г.Физика полупроводников. М.: Наука. 1990.
  13. Shmelev G. M., Epshtein E. M., Belonenko M. B.Current oscillations in a superlattice under non-quantizing electric and magnetic fields // arXiv: 0905.3457v2 (2009).