350 rub
Journal Electromagnetic Waves and Electronic Systems №10 for 2011 г.
Article in number:
Research of features of the terahertz waves propagation in the apodized open microresonance structure
Authors:
A. K. Esman, V. K. Kuleshov, G. L. Zykov
Abstract:
In this paper we propose the efficient planar selective electrodynamic system, composing of two coupled parts: receiving - made in the form of two similar rectangular open apodized periodic metal microresonance structures for the matching with the environment, and matching - made in the form of two similar waveguide lines with linearly varying width - for the optimal coupling with the input waveguide transmission line. Results of calculations with using the software package - HFSS (High Frequency Structure Simulator), providing simulation of the system and allowed to optimize the basic parameters of its three-dimensional structure for specific applications at the working resonance frequency of 1.82 THz are adduced. It is shown that such planar quasi-optical system has a higher efficiency of radiation energy conversion to the electronic flux energy (up to 86.4 %) and can be realized by a well developed integral technology in the industry. The carried out analysis of proposed planar apodized metal open microresonator structure for selective reception of radiation in the terahertz range confirms perspectives of using it to create devices and appliances for the present the feebly practically mastered range of electromagnetic waves. Thus planar components are practically more claimed due to their low cost, compactness and constructive combination with other circuit components performed in the form of the total printed circuit board.
Pages: 34-37
References
  1. Wild W., Gusten R., Holland W. S., Ivison R. J., Stacey G. L., Large antennas for ground-based astronomy above 1 THz // Antennas and Propagation Society International Symposium. 2006. P. 2391-2394.
  2. Ferguson B., Wang S., Gray D., Abbott D., Zhang X.-C., Identification of biological tissue using chirped probe THz imaging //
    Microelectronics Journal. 2002. V. 33. Iss. 12. P. 1043-1051.
  3. Beard M. C., Turner G. M., Schmuttenmaer C. A. Progress towards two-dimensional biomedical imaging with THz spectroscopy // Physics in Medicine and Biology. 2002. V. 47, № 21. P. 3841-3846.
  4. Chen Y., Liu H., Liu K., Zhang X.-C., THz spectroscopic investigation of selected purines and amino acids // The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics. 2005. IRMMW-THz 2005. V. 1. P. 54-55.
  5. Fitzgerald A. J., Berry E., Zinovev N. N., Walker G. C., Smith M. A., Chamberlain J. M., An introduction to medical imaging with coherent terahertz frequency radiation // Physics in Medicine and Biology. 2002. V. 47. № 7. P. R67-R84.
  6. Корнюхин В.И., Седов В. М. Синтез вибраторных антенн с периодически включенными реактивными нагрузками // Антенны. 2009. Вып. 8. C. 18-22.
  7. Банков С. Е., Курушин А. А. Расчет антенн и СВЧ-структур с помощью HFSS Ansoft. М.: ЗАО«НПП«Родник», 2009.
  8. Mandviwala T. A., Lail B. A., Boreman G. D., Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements // Microwave and Optical Technology Letters. 2008. V. 50. № 5. P. 1232-1237.