350 rub
Journal Electromagnetic Waves and Electronic Systems №10 for 2011 г.
Article in number:
Research of communication functions defining interaction between rating and oscillations of resonant system in higher zones of instability
Authors:
L. V. Cherkesova, A. N. Zaichenko
Abstract:
As it known, the functioning of the nonlinear resonator containing the basis nonlinear parametrical zone, or pazone, system (NPS) of optical, microwave and radio-frequency ranges, is founded on the phenomenon of a parametrical resonance - transformation of an entrance signal to respective alteration of parametrical oscillations amplitude. On windings of rating in such nonlinear parametrical zone converter, the current of excitation proceeds, with frequency , changing the inductance of windings of rating with the doubled frequency 2 . On this frequency, the resonant contour also is adjusted. Thus, the second harmonic of frequency of excitation of spectrum of casual signals (oscillations) of resonant contour for the account of display of nonlinear parametrical effect considerably amplifies. If to adjust resonant contour of NPS by selection of size of current rating, or to change its dynamic parametres by changing the capacity and number of coils of windings, it is possible to receive and use frequency of current of excitation, multiple to frequency of a rating. For NPS with the concentrated parametres from chains on cores, the operating conditions will be defined by size of the current causing necessary depth of inductance modulation. In the established mode in resonant contours parametrical oscillations with frequencies can simultaneously be generated. Simultaneous oscillations are caused by that in resonant contours always there are electric fluctuations among which there are oscillations with the necessary phase and fre-quency on which the corresponding contour is adjusted. These oscillations will be amplified for the account of parametrical effect. Communication between contours is carried out by placing on the general cores of resonant windings of various contours, and defined by communication functions. Oscillations will occur until the rating generator is included. Constructed earlier mathematical models of asymmetric nonlinear parametrical zone (pazone) systems at harmonious and polyharmonious external influence contain functions of communication, which consider interaction between external force (rating) and system oscillations. They represent the multiplying of hyperbolic functions which arguments are amplitudes of influence and the system response. As such, expressions characterize nonlinear communication of chain of excitation and a resonant contour their research is of interest. The size of arguments of such hyperbolic functions depends on intensity of external and internal forces, ways of introduction of energy in system. On their character of change, it is possible to judge change of peak characteristics of parametrical oscillations. Oscillatory properties of system will influence both arguments of functions of communication, and degree of its asymmetry through corresponding factors of the equation. Thus, communication functions define quantitative communication between external influence and system oscillations. Researches are carried out in work and the analysis of behaviour of functions of the communication defining quantitative communication between external influence (rating) and oscillations of system in the higher zones of instability of nonlinear parametrical zone converter, according to the mathematical models considering asymmetry of internal structure at polyharmonious external influence. It gives the chance to estimate influence of disorder of parametres of magnetic cores and number of coils at designing parametrical zone converters of a similar class. The analysis of the received results shows, that the general character of interactions in system in the presence of asymmetry of its parametres remains. With increase in degree of asymmetry (with growth in percentage terms deviations) intensity of parametrical interactions changes. The more the non-identity of system structures, the parametrical mechanism of exchange by energy of external force with resonant contour of nonlinear system as parametrical influence of external influence on behaviour of system decreases is less shown.
Pages: 5-18
References
  1. Хаяси Т. Нелинейные колебания в физических системах. М.: Мир. 1968.
  2. Вишневецкий А. И., Немецкий Г. М. Параметроны и их применение в устройствах связи. М.: Связь. 1968.
  3. Бессонов Л. А. Нелинейные электрические цепи. М.: Высшая школа. 1977.
  4. Чередников П. И. Расчет и проектирование параметрических систем на высших гармониках. Харьков: ХПИ. 1980.
  5. Головкина Л. В., Чередников П. И., Черкесова Л. В.Функции связи в параметрических системах Харьков: Харьковский институт радиоэлектроники. 1992 (Деп. В УкрИНТЭИ 17.08.92, № 1268).
  6. Черкесова Л. В., Подгайко О. И. Моделирование нелинейно-параметрических систем: Монография // Изв. вузов. Электромеханика. Новочеркасск. 2006.
  7. Черкесова Л. В. Обзор современного состояния и применения нелинейно-параметрических зонных резонаторов в электронной аппаратуре и перспективы их дальнейшего развития в XXI веке // Успехи современной радиоэлектроники. 2009. № 12. С. 5 - 24.
  8. Черкесова Л. В. Построение и анализ математической модели нелинейных процессов в параметрическом резонаторе при асимметрии его внутренней структуры и гармоническом внешнем воздействии // Успехи современной радиоэлектроники. 2009. № 8. С. 16 - 28.
  9. Черкесова Л. В. Построение математической модели и анализ энергетических процессов сильно асимметричного нелинейного параметрического зонного резонатора при полигармоническом внешнем воздействии // Успехи современной радиоэлектроники. 2010. № 1. С. 5 - 19.