350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2010 г.
Article in number:
Numerical study of frequency selective surfaces based on printed elements and perforated screens with multilayer magneto-dielectric covers
Keywords:
frequency selective surfaces
multifunctional antenna-s radomes
integral equation method
moment method
multi-layer magneto-dielectric covers
radar scattering matrix
dyadic Green-s function
Authors:
A.O. Kasyanov
Abstract:
Mathematical model of multilayered printed frequency selective surfaces with dielectric covers is presented in this paper. The model is built on the suggestion of array infinity and perfect conductivity of microstrip elements. Such printed structures can be used as frequency selective surface and as covers with controllable characteristics (for example tunable filters, adaptive radar cover, electronically switched polarizers). Full-wave analysis is executed by the integral equation method. The numerical solution of an integral equation has been obtained by Galerkin-s method. Unknown distribution of surface magnetic currents has been approximated by roof-top basic functions. The generalized scattering matrix method was used for simulation of multilayered printed frequency selective surface. The paper presents the compound algorithm which combines the integral equation method with the method of generalized scattering matrix. A lot of numerical examples are presented proving the algorithm effectiveness. By means of this model there were synthesized multilayer frequency selective surface as periodic arrays of the printed elements, which have arbitrary shape of reradiators. It is known, that the printed elements of special shape ensure, as rejecting and as transacting of electromagnetic waves in the given frequencies, and have neglected angular sensitivity. The results of constructive synthesis of printed frequency selective surfaces as rejecting or transmitting filters, which have neglected angular sensitivity, are represented in paper. Such an algorithm is rather flexible and multiple repeats the basic problem solution. It makes the procedure of computer code preparing much more effective and do not require to change the problem decision itself.
Pages: 47-55
References
- Касьянов А.О., Обуховец В.А. Металлодиэлектрические частотно-избирательные поверхности //Электромагнитные волны и электронные системы. 2009. Т. XIV. №11. С.29 - 38.
- Аплеталин В.Н., Казанцев Ю.Н., Мальцев В.П., Солосин В.С., Шатров А.Д. Частотно-селективные решетки из кольцевых элементов // Радиотехника и электроника. 2003. Т. 48. № 5. С. 517 - 527.
- Аплеталин В.Н., Казанцев Ю.Н., Мальцев В.П., Солосин В.С., Шатров А.Д. Рассеяние плоской волны на каскаде из двух частотно-селективных структур // Радиотехника и электроника. 2006. Т. 51. № 2. С.174 - 184.
- Богомягков А.И., Бодров В.В., Марков Г.Т., Старостенко Б.А. Расчет характеристик излучения вибраторных фазированных решеток с учетом влияния опорных стоек // В сб. научных ст. по прикладной электродинамике. М.: МЭИ. 1980. Вып.4. С. 164 - 207.
- Антенны (Современное состояние и проблемы) / под ред. Л.Д.Бахраха и Д.И.Воскресенского. М.: Сов. радио. 1970.
- Pozar D.M. Scanning Characteristics of Infinite Arrays of Printed AntennaSubarrays // IEEE Trans. on Antennas and Propag. June 1992. V. 40. Nо. 6. P.666 - 674.
- Wakabayashi H., Kominami M., Kusaka H., Nakashima H.Numerical simulations for frequency-selective screens with complementary elements // IEE Proc. Microwave Antennas Propag. December 1994. V. 141. Nо. 6. P.477 - 482.