350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2010 г.
Article in number:
Diagnostics of artificial - disturbances ionosphere with help of modern sounding technics
Authors:
G.G.Vertogradov, V.P.Uryadov, V.G.Vertogradov, E.G.Vertogradova, E.F. Plokhotnyuk, S.V.Kubatko, Yu. M. Khaidy, A.A.Ponyatov, V.V.Shumaev, Yu. N. Cherkashin, I.V.Krasheninnikov, V.A.Valov, D.V.Bredikhin, A.V.Makarov
Abstract:
At the present time elliptically polarized signals are beginning to be widely used in radiocommunication systems to guarantee their stability in the jamming environment of a various kind. This leads to the question of the adaptive antenna characteristics analysis for spatial polarization signal processing. In the previous works of the authors the new antenna design with the additional block for excluding the signal out of the covariance noise matrix forming device was proposed. This king of change allows reducing the time of «tuning» the antenna to the jamming environment without turning the signal off and also it allows to guarantee a signal-noise ratio value that is close to the optimal one. The objective of this article is to analyze the characteristics of the microwave band adaptive antennae with the additional block for excluding the signal out of the covariance noise matrix forming device that provide the spatial polarization processing for the elliptically polarized signals. The research results of the characteristics for the given antenna design have revealed that the consideration of the noise polarization properties when constructing the adaptive antenna array out of the orthogonal electric dipoles allows forming the «zeroes» in the given directions only in the aggregate directive pattern. This type of «zeroes» forming allows limiting the signal noise-ratio reduce to the value of about 3 dB (reduce from 21,072dB to 17,951 dB) when the circular polarized signal and linear polarized noise angles of arrival coincide. When signal and noise angles of arrival are large, signal-noise ratio value remains practically the same and is equal to 20,961 dB versus 21,072 dB in the nonjamming environment. The brief description of work and structure of the equipment used for diagnostics artificial - disturbed ionosphere is given. The equipment contains LFM ionosonde/direction finder, multichannel HF Doppler radar and broadband LFM ionosonde. This gives an opportunity to measure: distance frequency characteristics, amplitude frequency characteristics and angle frequency characteristics; dynamical power spectrums of complex low frequency signal and study their time dynamics (Doppler spectrum); the parameters of separate rays of propagation (Doppler-shift δf, amplitude а), which is forming the field in receiving point; the width of frequency scattering Δf of the signal, obtained at 95% level of received energy (complex low frequency signal band); average level of received signal relative to ADC digit capacity in decibel; power spectrum density of noise in analysis band relative to ADC digit capacity in decibel; average ratio signal/noise in receiving complex low frequency signal-s band; the turbidity coefficient of the ionosphere β, which is the integral measure of fine-grain small-scale structure of the ionosphere; the estimation of statistical characteristics of mentioned quantities (distribution functions, mathematical expectations and dispersions); the research of statistical rules of time correlation radius-s behavior of scattered component. Results of measurements of characteristics of short-wave radio signals, scattered on artificial small-scale irregularities, obtained with help of considered technique on paths of various extent and orientation are presented. Quasi-periodical pulsations of Doppler-shift of scattered signals, discovered during the experiment, are discussed.
Pages: 22-29
References
  1. Fialer P.A. Field-aligned scattering from a heated region of the ionosphere Observations at HF and VHF//  Radio Sci. 1974. V.9.  No. 11, Р. 923-940.
  2. Гуревич А.В. Нелинейные явления в ионосфере// УФН. 2007. Т.177. № 11.С.1145-1177.
  3. Вертоградов Г.Г., Урядов В.П., Вертоградов В.Г., Шевченко В.Н. Исследование угловых-частотных характеристик КВ-волн при наклонном ЛЧМ-зондировании ионосферы// Электромагнитные волны и электронные системы. 2007. Т.12. №5. С.25-32.
  4. Вертоградов Г.Г., Мятежников Ю.П. Многооконный метод спектрального анализа сигналов, отраженных от ионосферы// Геомагнетизм и аэрономия. 2004. Т.44. №3. C 357-371.
  5. Чернов А.Г., Шумаев В.В. Программно перестраиваемый автоматизированный модуль для систем КВ радиосвязи/ Труды XIV Междунар. научно-технич. конф. «Радиолокация, навигация и связь» (RLNCC-2008), 17-19 апреля 2008 г., Воронеж, 2008. Т.2 С. 990-1000.
  6. Понятов А.А., Урядов В.П. Компьютерное моделирование ионосферного распространения коротких радиоволн // Препринт № 428. НИРФИ, Н. Новгород. 1996.