350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2010 г.
Article in number:
The singularities of E- and H-polarized waves diffraction by star-shaped cylinder
Authors:
D.D. Gabriel-yan, M.Yu. Zvezdina, O.S. Labunko, E.D. Bezuglov, A.V. Podzorov
Abstract:
Antenna design for the advanced infocommunication complexes requires the realization of new and often contradictory requirements that are placed upon the antenna system. One of the possible solutions for this problem is the usage of the structures that maintain the surface waves for it allows achieving the required redistribution of the electromagnetic waves in space. One of the implementations of these structures is the star-shaped cylinder. Despite the existing estimation methods and known patterns for the similar structures it is necessary to develop effective estimation methods for the electromagnetic waves diffraction and to drow out the patterns connecting the contour parameters to the surface inmpedance value for the star-shaped cylinders. These research can be based on the peculiarities of the E- and H- polarized waves in the closed waveguides with the square cross-section. The objective of this article is to analyze the peculiarities of the diffraction problem solution for the E- and H- polarized waves by the perfectly conducting star-shaped cylinder as well as the scattering of the waves with the given polarization by the structure under investigation. The diffraction problem solution for the E- and H-polarized waves by a circular star-shaped cylinder is given. It is converted to the Fredholm-s integral equations of the 2d kind with the respect to the longitudinal components of the surface electric (E-polarization) and magnetic (H-polarization) currents. The peculiarities of the wave diffraction for these polarizations by the considered structure are discussed. Physical theory for these peculiarities is given basing on the peculiarities of E- and H-polarized waves propagation in the waveguide.
Pages: 19-21
References
  1. Кисель В.Н., Лагарьков А.Н. Рассеяние электромагнитной волны на телах из материалов с отрицательным показателем преломления // Электромагнитные волны и электронные системы. 2002. Т.7, №7. С. 55-59.
  2. Mitchell A., Kokotoff D.M., Austin M.W.Closed-form expressions for the numerical dispersion and reflection in FEM simulations involving // IEEE Trans. Antennas and Propag. 2001. AP-49. No.2. P.158-164.
  3. Kishk A.A. Analysis of Hard Surfaces of Cylindrical Structures of Arbitrary Shaped Cross Section Using Asymptotic Boundary Conditions // IEEE Trans. Antennas and Propag. 2003. V.51. No.6. P. 1150-1156.
  4. Kishk A.A. Electromagnetic Scattering From Transversely Corrugated Cylindrical Structures Using the Asymptotic Corrugated Boundary Conditions // IEEE Trans. Antennas and Propag. 2004. V.52. No.11. P. 3104-3108.
  5. Петров Б.М., Шарварко В.Г. Синтез поверхностного импеданса кругового цилиндра по заданной диаграмме рассеяния // Cб. научн.-метод. статей по прикладной электродинамике. М.: Высшая школа. 1980. Вып.3. C. 62-78.
  6. Габриэльян Д.Д., Звездина М.Ю., Синявский Г.П. Методы решения задач дифракции для цилиндрических поверхностей с радиопоглощающими покрытиями // Успехи современной радиоэлектроники. 2006. C.68-80.
  7. Звездина М.Ю., Лабунько О.С., Сухопаров П.Е. Реализация импедансных свойств путем изменения параметров звездного контура // Электромагнитные волны и электронные системы. 2007. Т.12. №5. C.13-15.
  8. Лабунько О.С. Строгий метод в задачах дифракции на цилиндрах с учетом свойств 2π-периодичности // Электромагнитные волны и электронные системы. 2009. Т.14. №5. С.18-20.