350 rub
Journal Electromagnetic Waves and Electronic Systems №11 for 2010 г.
Article in number:
Possibility Analysis of Subwavelength Light Localization and Focus Extending for High-Aperture Focusing System Using Vortical Phase Transmission Function
Keywords:
high-aperture focusing system
Debye approximation
vector electric field
subwavelength light localization
focus extending
vortical phase transmission function
general vortical polarization
Authors:
S.N. Khonina, S.G. Volotovsky
Abstract:
The possibility analysis of subwavelength light localization and focus extending for high-aperture focusing system is carried out using vortical phase transmission function for various types of entrance polarization, including the general vortical kind.
It is analytically and numerically shown that subwavelength localization in separate components of a vector field is possible at any types of polarization. That fact is useful for considering an interaction of laser radiation with the materials selectively sensitive to various components of an electromagnetic field.
Definite types of polarization are necessary for formation of essentially subwavelength details in the total intensity just as additional apodization for pupil function, for example, a narrow ring. The optimum choice of the ring radius allows to reach the compromise between depth of focus and the size of a focal spot.
Pages: 6-25
References
- Karman G. P., Beijersbergen M. W., van Duijl A., Bouwmeester D., and Woerdman J. P. Airy pattern reorganization and subwavelength structure in a focus // J. Opt. Soc. Am. A. 1998. V. 15. № 4. P. 884-899.
- Quabis S., Dorn R., Eberler M., Glockl O., and Leuchs G. Focusing light to a tighter spot // Opt. Commun. 2000. V.179. P.1-7.
- Kant R.Superresolution and increased depth of focus: an inverse problem of vector diffraction // J. Mod. Opt. 2000. V. 47. № 5. P. 905-916.
- Dorn R., Quabis S., and Leuchs G. Sharper focus for a radially polarized light beam // Phys. Rev. Lett. 2003. V.91. P.233901.
- Davidson N., Bokor N. High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens // Opt. Lett. 2004. V. 29. № 12. P. 1318-1320.
- Sheppard C. J.R., Choudhury A. Annular pupils, radial polarization, and superresolution // Appl. Opt. 2004. V. 43. № 22. P. 4322-4327.
- Pereira S.F., van de Nes A.S. Superresolution by means of polarisation, phase and amplitude pupil masks // Opt. Commun. 2004. V. 234. P.119-124.
- Haifeng Wang, Luping Shi, Boris Lukyanchuk, Colin Sheppard and Chong Tow Chong Creation of a needle of longitudinally polarized light in vacuum using binary optics // Nature Photonics. 2008. V. 2. P. 501-505.
- Kozawa Y., Sato S. Sharper focal spot formed by higher-order radially polarized laser beams // J. Opt. Soc. Am. A. 2007. V.24. P.1793-1798.
- Lerman G.M., Levy U. Effect of radial polarization and apodization on spot size under tight focusing conditions // Opt. Express. 2008. V. 16. № 7. P. 4567-4581.
- Котляр В.В., Стафеев С.С. Моделирование острой фокусировки радиально-поляризованной лазерной моды с помощью конического и бинарного микроаксиконов // Компьютерная оптика. 2009. Т. 33. № 1. С. 52-60
- Zhan QiwenCylindrical vector beams: from mathematical concepts to applications // Advances in Optics and Photonics. 2009. V. 1. P.1-57.
- Kozawa Y., Sato Sh. Generation of a radially polarized laser beam by use of a conical Brewster prism // Opt. Lett. 2005. V.30(22). P.3063-3065.
- Низьев В.Г., Якунин В.П., Туркин Н.Г. Генерация поляризационно-неоднородных мод в мощном CO2 лазере // Квантовая электроника. 2009. № 39(6). С. 505-514.
- Bomzon Z., Biener G., Kleiner V., and Hasman E. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings // Opt. Lett. 2002. V.27(5). P.285-287.
- Yonezawa K., Kozawa Y., and Sato S. Compact Laser with Radial Polarization Using Birefringent Laser Medium, Jpn. // J. Appl. Phys. 2007. V.46(8A). P.5160-5163.
- Tidwell S.C., Ford D.H., and Kimura W.D. Generating radially polarized beams interferometrically // Applied Optics. 1990. V.29. P.2234-2239.
- Passilly N., de Saint Denis R., and Aït-Ameur K., Treussart F., Hierle R., and Roch J.-F. Simple interferometric technique for generation of a radially polarized light beam // J. Opt. Soc. Am. A. 2005. V.22(5). P.984-991.
- Volpe G., Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams // Opt. Comm. 2004. V.237. P.89-95.
- Davis J.A., McNamara D.E., Cottrell D.M., and Sonehara T. Two dimensional polarization encoding with a phase only liquid-crystal spatial light modulator // Appl. Opt. 2000. V.39. P.1549-15541.
- Neil M.A.A., Massoumian F., Juˇskaitis R., and Wilson T. Method for the generation of arbitrary complex vector wave fronts // Opt. Lett. 2002. V.27(21). P.1929-1931.
- Iglesias I., Vohnsen B. Polarization structuring for focal volume shaping in high-resolution microscopy // Opt. Commun. 2007. V. 271. P. 40-47.
- Карпеев С.В., Хонина С.Н. Оптическая схема для универсальной генерации и конверсии поляризационно-неоднородного лазерного излучения с использованием ДОЭ // Компьютерная оптика. 2009. Т. 33. № 3. С. 261-267.
- Cicchitelli L., Hora H., and Postle R. Longitudinal components for laser beams in vacuum // Phys. Rev. A. 1990. V. 41. P. 3727-3732.
- Simpson N.B., Allen L., Padgett M.J. Optical tweezers and optical spanners with Laguerre-Gaussian modes // J. Mod. Opt. 1996. V. 43(12). P. 2485-2491.
- Heckenberg N.R., Nieminen T.A., Friese M.E.J., Rubinsztein-Dunlop H. Trapping microscopic particles with singular beams // Proc. SPIE. 1998. V. 3487. P. 46-53.
- Helseth L.E.Mesoscopic orbitals in strongly focused light // Opt. Commun. 2003. V. 224. P. 255-261.
- Сойфер В.А., Котляр В.В., Хонина С.Н. Оптическое манипулирование микрообъектами: достижения и новые возможности, порожденные дифракционной оптикой // Физика элементарных частиц и атомного ядра. 2004. № 35(6). С. 1368-1432.
- Скиданов Р.В., Хонина С.Н., Котляр В.В., Сойфер В.А. Экспериментальное исследование движения диэлектрических шариков в световых пучках с угловыми гармониками высоких порядков // Компьютерная оптика. 2007. № 31(1). С. 14-21.
- Franke-Arnold S., Allen L., and Padgett M. Advances in optical angular momentum // Laser Photonics Rev. 2008. V. 2. P. 299-313.
- Levenson M.D., Ebihara T., Dai G., Morikawa Y., Hayashi N., Tan S.M. Optical vortex masks for via levels // J. Microlith. Microfab. Microsys. 2004. V. 3(2). P. 293-304.
- Unno Y., Ebihara T., Levenson M.D. Impact of mask errors and lens aberrations on the image formation by a vortex mask // J. Microlith. Microfab. Microsys. 2005. V. 4(2). P. 023006.
- Willig K.I., Keller J., Bossi M., Hell S.W. STED microscopy resolves nanoparticle assemblies // New J. Phys. 2006. V. 8. P. 106.
- Torok P., Munro P.R.T. The use of Gauss-Laguerre vector beams in STED microscopy // Opt. Express. 2004. V. 12. № 15. P. 3605-3617.
- Helseth L.E.Optical vortices in focal regions // Opt. Commun. 2004. V. 229. P. 85-91.
- Liu P., Lu B. Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region // Opt. Commun. 2007. V. 272. P. 1-8.
- Singh R.K., Senthilkumaran P., Singh K. Focusing of linearly-, and circularly polarized Gaussian background vortex beams by a high numerical aperture system afflicted with third-order astigmatism // Opt. Commun. 2008. V. 281. P. 5939-5948.
- Chen B., Pu J. Tight focusing of elliptically polarized vortex beams // Appl. Opt. 2009. V. 48. № 7. P. 1288-1294.
- Rao L., Pu J., Chen Zh., Yei P. Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens // Opt. & Las. Techn. 2009. V. 41. P. 241-246.
- Beth R.A. Mechanical detection and measurement of the angular momentum of light // Phys. Rev. 1936. V. 50. P. 115-125.
- Holbourn A.H.S.Angular momentum of circularly polarized light // Nature (London). 1936. V. 137. P. 31.
- Allen L., Beijersbergen M.W., Spreeuw R.J.C., and Woerdman J.P. Orbital angular momentum of light and the transformation
of Laguerre-Gaussian laser modes // Phys. Rev. A. 1992. V. 45. P. 8185-8189. - Barnett S.M., Allen L. Orbital angular-momentum and nonparaxial light-beams // Opt. Commun. 1994. V. 110. P. 670-678.
- Soskin M.S., Gorshkov V.N., Vasnetsov M.V., Malos J.T., and Heckenberg N.R. Topological charge and angular momentum of light beams carrying optical vortices // Phys. Rev. A. 1997. V. 56. P. 4064-4075.
- Richards B., Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system // Proc. Royal Soc. A. 1959. V. 253. P. 358-379.
- Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Специальные функции. М.: Наука. 1983.
- Franco G. Polarization basis for vortex beams // J. Opt. Soc. Am. A. 2001. V. 18. № 7. P. 1612-1617.
- Schwartz Ch., Dogariu A. Backscattered polarization patterns, optical vortices, and the angular momentum of light // Opt. Lett. 2006. V. 31. № 8. P. 1121-1123.
- Bokor N., Davidson N. A three dimensional dark focal spot uniformly surrounded by light // Opt. Commun. 2007. V. 279. P. 229-234.
- Grosjean T., Courjon D. Photopolymers as vectorial sensors of the electric field // Opt. Express. 2006. V. 14. № 6. P. 2203-2210.
- Xie X.S., Dunn R.C. Probing single molecule dynamics // Science. 1994. V. 265. P. 361-364.
- Beversluis M.R., Novotny L., and Stranick S.J. Programmable vector point-spread function engineering // Opt. Express. 2006. V. 14. P. 2650-2656.