350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2010 г.
Article in number:
On the description of internal impedance per unit length for multi-walled carbon nanotubes
Authors:
L.A. Apresyan, D.V. Vlasov
Abstract:
The carbon nanotubes (CNT) represent an important example of lengthy scatterers for which the transverse size D is small, and the typical length L is large in comparison with light wavelength λ, i.e. L >> λ >>D. As a result, the scattering cross section for CNT is larger than that for molecular scattering due to large multiplier L. Besides, in the case of light scattering experiments some new geometrical or antennas effects arise, which are absent for small scatterers with characteristic dimensions a <<λ . In particular, the specific antenna resonances, which reveal themselves when the frequency of incoming wave coincides with some specific frequency of scatterer, require more strict approach, then usual Born approximation. Such resonances can be described by well known from the theory of thin antennas Leontovich-Levin equation, modified for the case of thin non-ideal conductors with axial symmetry. The main electrodynamic characteristic of such conductors is a so-called internal impedance per unit length Zi. In this work the recurrence procedure for calculation of impedance Zi for achiral multi-walled CNT is developed.
Pages: 27-31
References
  1. Sfeir M. Y., Wang  F., Huanget L. et al.,Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering // Science. 2004. V. 306. P.1540 - 1543.
  2. Wang F., Sfeir M.Y., Huang L. et al., Interactions between individual carbon nanotubes studied by Rayleigh scattering spectroscopy // Phys. Rev. Lett. 2006. V.96. P. 167401- 4.
  3. Shoji S., Suzuki H., Zaccaria R.P., et al. Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film // Phys. Rev. 2008. V. B77. P.153407-4.
  4. Wang Y., Kempa K., Kimball B., et al. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes //Appl. Phys. Lett. 2004. V. 85. P. 2607-2609.
  5. Апресян Л.А., Власов Д.В. Поляризация и антенные эффекты при рассеянии света на анизотропных вытянутых наночастицах // Электромагнитные волны и электронные системы. 2008. Т. 13. № 9. С. 56-64.
  6. Леонтович М., Левин М. К теории возбуждения колебаний в вибраторах антенн // ЖТФ. 1944. Т.14. С. 481-506.
  7. Slepyan G.Ya., Shuba M.V., Maksimenko S.A., Lakhtakia A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas // Phys. Rev. 2006. V. B73. P. 195416-11.
  8. Апресян Л.А., Власов Д.В., Власова Т.В., Конов В.И., Крикунов Г.А., Климанов А.А. Реактор с активированным водородом для синтеза углеродных нанотрубок // ЖТФ. 2006. Т. 76. С. 140-142.
  9. Maniwa Y., Fujiwara R., Kira H.,еt al. Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study // Phys. Rev. 1999. V.B64. P.073105-4.
  10. Апресян Л.А., Власов Д.В. Уравнение Леонтовича−Левина с учетом конечной проводимости проводника // ЖТФ. 2009. Т.79. Вып.12. С.14-18.
  11. ВайнштейнЛ.А. Электромагнитныеволны. Изд. 2-е, перераб. идоп. М.: Радиоисвязь. 1988.
  12. Slepyan G.Ya., Shuba M.V., Maksimenko S.A.,Lakhtakia A. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation // Phys. Rev. 1999. V.B60. P.17136-17149.